Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China

Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in... To better understand the role that bacteriophages play in antibiotic resistance genes (ARGs) dissemination in the aquatic environment, 36 water samples were collected from the Funan River in Sichuan, China. The occurrence of 15 clinically relevant ARGs and one class 1 integron gene int1 in phage-particle DNA were evaluated by PCR. The abundance of ARGs (blaCTX-M, sul1, and aac-(6′)-1b-cr) was determined by quantitative PCR (qPCR). High prevalence of the int1 gene (66.7%) was found in the phage-particle DNA of tested samples, followed by sul1 (41.7%), sul2 (33.3%), blaCTX-M (33.3%), aac-(6′)-lb-cr (25%), aph(3′)-IIIa (16.7%), and ermF (8.3%). The qPCR data showed higher gene copy (GC) numbers in samples collected near a hospital (site 7) and a wastewater treatment plant (WWTP) (site 10) (P < .05). Particularly the absolute abundance of aac-(6′)-lb-cr gene was significantly higher than the blaCTX-M and sul1 genes with the gene copy (GC) numbers of 5.73 log10 copy/mL for site 7 and 4.99 log10 copy/mL for site 10. To our best knowledge, this is the first study to report the presence of sul2, aac-(6′)-lb-cr, ermF and aph(3′)-IIIa genes in bacteriophage DNA derived from aquatic environments. Our findings highlight the potential of ARGs to be transmitted via bacteriophages in the aquatic environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China

Loading next page...
 
/lp/elsevier/prevalence-of-antibiotic-resistance-genes-in-bacteriophage-dna-Zr7eTMvvKr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.148
Publisher site
See Article on Publisher Site

Abstract

To better understand the role that bacteriophages play in antibiotic resistance genes (ARGs) dissemination in the aquatic environment, 36 water samples were collected from the Funan River in Sichuan, China. The occurrence of 15 clinically relevant ARGs and one class 1 integron gene int1 in phage-particle DNA were evaluated by PCR. The abundance of ARGs (blaCTX-M, sul1, and aac-(6′)-1b-cr) was determined by quantitative PCR (qPCR). High prevalence of the int1 gene (66.7%) was found in the phage-particle DNA of tested samples, followed by sul1 (41.7%), sul2 (33.3%), blaCTX-M (33.3%), aac-(6′)-lb-cr (25%), aph(3′)-IIIa (16.7%), and ermF (8.3%). The qPCR data showed higher gene copy (GC) numbers in samples collected near a hospital (site 7) and a wastewater treatment plant (WWTP) (site 10) (P < .05). Particularly the absolute abundance of aac-(6′)-lb-cr gene was significantly higher than the blaCTX-M and sul1 genes with the gene copy (GC) numbers of 5.73 log10 copy/mL for site 7 and 4.99 log10 copy/mL for site 10. To our best knowledge, this is the first study to report the presence of sul2, aac-(6′)-lb-cr, ermF and aph(3′)-IIIa genes in bacteriophage DNA derived from aquatic environments. Our findings highlight the potential of ARGs to be transmitted via bacteriophages in the aquatic environment.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial