Preparation, optical and electrochemical properties, and molecular orbital calculations of tetraazaporphyrinato ruthenium (II) bis(4-methylpyridine) fused with one to four diphenylthiophene units

Preparation, optical and electrochemical properties, and molecular orbital calculations of... 2,5-Diphenyl-3,4-dicyanothiophene (1) and phthalonitrile (2) were mixed and treated with ruthenium (III) trichloride, 4-methylpyridine, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 2-ethoxyethanol at 135°C, to produce low-symmetrical tetraazaporphyrins (TAPs) (3), (4), (5), and (6) with one to three thiophene rings. Two thiophene-annelated tetraazaporphyrins were isolated as opposite and adjacent isomers 4 and 5. The structure of 3 was determined by X-ray crystallography, showing that the thiophene ring linked at the 3,4-positions on the tetraazaporphyrin scaffold deviates from the mean plane of the four central pyrrole nitrogen atoms (N1–N3–N5–N7). Optical and electrochemical properties of the products were examined by UV–vis and magnetic circular dichroism (MCD) spectroscopy, together with cyclic voltammetry. In the 1H NMR spectra, the signals of 4-methylpyridine coordinating to the central ruthenium atom appeared at a higher magnetic field than those of uncoordinated 4-methylpyridine itself due to the shielding effect of the TAP ring. Increasing the number of fused thiophene rings resulted in 1) lower magnetic field shifts of the signals of axially coordinated 4-methylpyridine in the 1H NMR spectra, 2) lower energy shifts of the Q band absorption in the UV–vis spectra, and 3) decreasing (cathodic shift) of the first oxidation potentials. The structures of simplified model compounds were optimized using the DFT method with the Gaussian 09 program at the B3LYP/LANL2DZ level for the Ru atom and the B3LYP/6-31G (d, p) level for the C, H, N, and S atoms. The optimized structures were utilized to calculate the NMR shielding constants, the HOMO and LUMO orbital energies, and the electronic absorption spectra. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Inorganic Biochemistry Elsevier

Preparation, optical and electrochemical properties, and molecular orbital calculations of tetraazaporphyrinato ruthenium (II) bis(4-methylpyridine) fused with one to four diphenylthiophene units

Loading next page...
 
/lp/elsevier/preparation-optical-and-electrochemical-properties-and-molecular-Enm6O9omTk
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Inc.
ISSN
0162-0134
eISSN
1873-3344
D.O.I.
10.1016/j.jinorgbio.2016.01.010
Publisher site
See Article on Publisher Site

Abstract

2,5-Diphenyl-3,4-dicyanothiophene (1) and phthalonitrile (2) were mixed and treated with ruthenium (III) trichloride, 4-methylpyridine, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 2-ethoxyethanol at 135°C, to produce low-symmetrical tetraazaporphyrins (TAPs) (3), (4), (5), and (6) with one to three thiophene rings. Two thiophene-annelated tetraazaporphyrins were isolated as opposite and adjacent isomers 4 and 5. The structure of 3 was determined by X-ray crystallography, showing that the thiophene ring linked at the 3,4-positions on the tetraazaporphyrin scaffold deviates from the mean plane of the four central pyrrole nitrogen atoms (N1–N3–N5–N7). Optical and electrochemical properties of the products were examined by UV–vis and magnetic circular dichroism (MCD) spectroscopy, together with cyclic voltammetry. In the 1H NMR spectra, the signals of 4-methylpyridine coordinating to the central ruthenium atom appeared at a higher magnetic field than those of uncoordinated 4-methylpyridine itself due to the shielding effect of the TAP ring. Increasing the number of fused thiophene rings resulted in 1) lower magnetic field shifts of the signals of axially coordinated 4-methylpyridine in the 1H NMR spectra, 2) lower energy shifts of the Q band absorption in the UV–vis spectra, and 3) decreasing (cathodic shift) of the first oxidation potentials. The structures of simplified model compounds were optimized using the DFT method with the Gaussian 09 program at the B3LYP/LANL2DZ level for the Ru atom and the B3LYP/6-31G (d, p) level for the C, H, N, and S atoms. The optimized structures were utilized to calculate the NMR shielding constants, the HOMO and LUMO orbital energies, and the electronic absorption spectra.

Journal

Journal of Inorganic BiochemistryElsevier

Published: May 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off