Preparation of low molecular weight cyclic polystyrenes with high purity via liquid chromatography at the critical condition

Preparation of low molecular weight cyclic polystyrenes with high purity via liquid... Cyclic polymers synthesized by ring-closure method from linear precursors contain some of linear contaminates. In this work, the origin of linear contaminates in cyclic polystyrenes (c-PS) is demonstrated by the coupling of liquid chromatography at the critical condition (LCCC) with matrix-assisted laser desorption/ionization time-of-flight mass spectra. The linear contaminates are revealed to be the “dead” chains during ATRP by chain termination, the unreacted linear polystyrene (l-PS) precursors, and the dimers by the imperfect ring-closure reaction. The c-PS are purified by LCCC fractionation, and the results show the LCCC fractionation at the critical adsorption point (CAP) of c-PS is more efficient than that at the CAP of linears for low molecular weight (<10,000) PS. A two-step LCCC method is presented for the preparation of c-PS with high purity (>99.6%) via the tandem-coupled LCCC fractionation at the CAP of l-PS and at the CAP of c-PS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Preparation of low molecular weight cyclic polystyrenes with high purity via liquid chromatography at the critical condition

Loading next page...
 
/lp/elsevier/preparation-of-low-molecular-weight-cyclic-polystyrenes-with-high-0dVZcmmkj0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2017.12.020
Publisher site
See Article on Publisher Site

Abstract

Cyclic polymers synthesized by ring-closure method from linear precursors contain some of linear contaminates. In this work, the origin of linear contaminates in cyclic polystyrenes (c-PS) is demonstrated by the coupling of liquid chromatography at the critical condition (LCCC) with matrix-assisted laser desorption/ionization time-of-flight mass spectra. The linear contaminates are revealed to be the “dead” chains during ATRP by chain termination, the unreacted linear polystyrene (l-PS) precursors, and the dimers by the imperfect ring-closure reaction. The c-PS are purified by LCCC fractionation, and the results show the LCCC fractionation at the critical adsorption point (CAP) of c-PS is more efficient than that at the CAP of linears for low molecular weight (<10,000) PS. A two-step LCCC method is presented for the preparation of c-PS with high purity (>99.6%) via the tandem-coupled LCCC fractionation at the CAP of l-PS and at the CAP of c-PS.

Journal

PolymerElsevier

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off