Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash for the removal of U(VI)

Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash... It is usually difficult to control the microstructure of mesoporous silica materials using coal fly ash as raw materials. In this study, amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) were prepared from coal fly ash using a novel interfacial cohydrolysis-condensation method in an alkane-aqueous system. Characterizations suggested a regular microstructure, high specific surface area (676 m2/g) as well as stable and uniformly distributed amidoxime groups in the ami-MSN framework. Furthermore, ami-MSN displays a high U(VI) removal capacity in sorption experiments (98.9% removal efficiency of 50 ppm U(VI) at a dosage of 600 mg/L). The sorption showed significant pH dependence. Introducing various cations and anions showed differing effects on sorption, which can be attributed to differing complexation abilities of ions/ami-MSN/U(VI). The sorption mechanism was also studied. In pursuit of the strategy of “treating wastewater with materials derived from waste,” this work suggests that ami-MSN can be an effective and low-cost sorbent for U(VI) removal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash for the removal of U(VI)

Loading next page...
 
/lp/elsevier/preparation-of-amidoxime-functionalized-mesoporous-silica-nanospheres-yPBRxj0pAo
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.057
Publisher site
See Article on Publisher Site

Abstract

It is usually difficult to control the microstructure of mesoporous silica materials using coal fly ash as raw materials. In this study, amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) were prepared from coal fly ash using a novel interfacial cohydrolysis-condensation method in an alkane-aqueous system. Characterizations suggested a regular microstructure, high specific surface area (676 m2/g) as well as stable and uniformly distributed amidoxime groups in the ami-MSN framework. Furthermore, ami-MSN displays a high U(VI) removal capacity in sorption experiments (98.9% removal efficiency of 50 ppm U(VI) at a dosage of 600 mg/L). The sorption showed significant pH dependence. Introducing various cations and anions showed differing effects on sorption, which can be attributed to differing complexation abilities of ions/ami-MSN/U(VI). The sorption mechanism was also studied. In pursuit of the strategy of “treating wastewater with materials derived from waste,” this work suggests that ami-MSN can be an effective and low-cost sorbent for U(VI) removal.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off