Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata

Predictive modeling for US commercial building energy use: A comparison of existing statistical... With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10–15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system EUIs. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy and Buildings Elsevier

Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata

Loading next page...
 
/lp/elsevier/predictive-modeling-for-us-commercial-building-energy-use-a-comparison-AP8ncv41ep
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0378-7788
eISSN
1872-6178
D.O.I.
10.1016/j.enbuild.2017.12.031
Publisher site
See Article on Publisher Site

Abstract

With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10–15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system EUIs. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling.

Journal

Energy and BuildingsElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off