Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches

Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches Persistent organic products are compounds used for various purposes, such as personal care products, surfactants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly introduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods such as Quantitative Structure–Activity Relationships (QSARs) have been used to develop important models for prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Qcv2) show the following values: Qcv2 = 0.793, coefficient of determination (R2) = 0.823, explained variance in external prediction (Qext2) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as already mentioned in previously published studies but other physicochemical properties combined contribute to the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This information from the model can be useful in predicting so as to minimize the toxicity of organic compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches

Loading next page...
 
/lp/elsevier/predictive-ecotoxicity-of-moa-1-of-organic-chemicals-using-in-silico-FFDi5Jky0z
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.054
Publisher site
See Article on Publisher Site

Abstract

Persistent organic products are compounds used for various purposes, such as personal care products, surfactants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly introduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods such as Quantitative Structure–Activity Relationships (QSARs) have been used to develop important models for prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Qcv2) show the following values: Qcv2 = 0.793, coefficient of determination (R2) = 0.823, explained variance in external prediction (Qext2) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as already mentioned in previously published studies but other physicochemical properties combined contribute to the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This information from the model can be useful in predicting so as to minimize the toxicity of organic compounds.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off