Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding

Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG... Due to the delays inherent in neuronal transmission, our awareness of sensory events necessarily lags behind the occurrence of those events in the world. If the visual system did not compensate for these delays, we would consistently mislocalize moving objects behind their actual position. Anticipatory mechanisms that might compensate for these delays have been reported in animals, and such mechanisms have also been hypothesized to underlie perceptual effects in humans such as the Flash-Lag Effect. However, to date no direct physiological evidence for anticipatory mechanisms has been found in humans. Here, we apply multivariate pattern classification to time-resolved EEG data to investigate anticipatory coding of object position in humans. By comparing the time-course of neural position representation for objects in both random and predictable apparent motion, we isolated anticipatory mechanisms that could compensate for neural delays when motion trajectories were predictable. As well as revealing an early neural position representation (lag 80–90 ms) that was unaffected by the predictability of the object's trajectory, we demonstrate a second neural position representation at 140–150 ms that was distinct from the first, and that was pre-activated ahead of the moving object when it moved on a predictable trajectory. The latency advantage for predictable motion was approximately 16 ± 2 ms. To our knowledge, this provides the first direct experimental neurophysiological evidence of anticipatory coding in human vision, revealing the time-course of predictive mechanisms without using a spatial proxy for time. The results are numerically consistent with earlier animal work, and suggest that current models of spatial predictive coding in visual cortex can be effectively extended into the temporal domain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding

Loading next page...
 
/lp/elsevier/predictive-coding-of-visual-object-position-ahead-of-moving-objects-WmrkQhH4hl
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.063
Publisher site
See Article on Publisher Site

Abstract

Due to the delays inherent in neuronal transmission, our awareness of sensory events necessarily lags behind the occurrence of those events in the world. If the visual system did not compensate for these delays, we would consistently mislocalize moving objects behind their actual position. Anticipatory mechanisms that might compensate for these delays have been reported in animals, and such mechanisms have also been hypothesized to underlie perceptual effects in humans such as the Flash-Lag Effect. However, to date no direct physiological evidence for anticipatory mechanisms has been found in humans. Here, we apply multivariate pattern classification to time-resolved EEG data to investigate anticipatory coding of object position in humans. By comparing the time-course of neural position representation for objects in both random and predictable apparent motion, we isolated anticipatory mechanisms that could compensate for neural delays when motion trajectories were predictable. As well as revealing an early neural position representation (lag 80–90 ms) that was unaffected by the predictability of the object's trajectory, we demonstrate a second neural position representation at 140–150 ms that was distinct from the first, and that was pre-activated ahead of the moving object when it moved on a predictable trajectory. The latency advantage for predictable motion was approximately 16 ± 2 ms. To our knowledge, this provides the first direct experimental neurophysiological evidence of anticipatory coding in human vision, revealing the time-course of predictive mechanisms without using a spatial proxy for time. The results are numerically consistent with earlier animal work, and suggest that current models of spatial predictive coding in visual cortex can be effectively extended into the temporal domain.

Journal

NeuroimageElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off