Prediction model of carbonation depth for recycled aggregate concrete

Prediction model of carbonation depth for recycled aggregate concrete The prediction of carbonation depth for recycled aggregate concrete (RAC) is investigated in this paper. The existing prediction models were evaluated, and it showed that the coefficient of variation (COV) of model error for the existing models is high. By introducing the weighed water absorption of aggregates, the COV of model error can be effectively decreased. Compared with the existing models, the proposed model can predict more accurate carbonation depths. For RAC specimens, compared with the fib model and Xiao and Lei's model-a, the COV of model error of the proposed model is 0.36 which is decreased by 33.3%, and when compared with Xiao and Lei's model-b and Silva et al.’s model, the corresponding decreases are 55.2% and 16.2%. Finally, the proposed model is validated by a 10-year-old carbonation experiment, which indicates that the proposed model is reasonable and can be applied to predict the carbonation depth of RAC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cement and Concrete Composites Elsevier

Prediction model of carbonation depth for recycled aggregate concrete

Loading next page...
 
/lp/elsevier/prediction-model-of-carbonation-depth-for-recycled-aggregate-concrete-AUjZJs1d7X
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0958-9465
D.O.I.
10.1016/j.cemconcomp.2018.01.013
Publisher site
See Article on Publisher Site

Abstract

The prediction of carbonation depth for recycled aggregate concrete (RAC) is investigated in this paper. The existing prediction models were evaluated, and it showed that the coefficient of variation (COV) of model error for the existing models is high. By introducing the weighed water absorption of aggregates, the COV of model error can be effectively decreased. Compared with the existing models, the proposed model can predict more accurate carbonation depths. For RAC specimens, compared with the fib model and Xiao and Lei's model-a, the COV of model error of the proposed model is 0.36 which is decreased by 33.3%, and when compared with Xiao and Lei's model-b and Silva et al.’s model, the corresponding decreases are 55.2% and 16.2%. Finally, the proposed model is validated by a 10-year-old carbonation experiment, which indicates that the proposed model is reasonable and can be applied to predict the carbonation depth of RAC.

Journal

Cement and Concrete CompositesElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off