Prediction and correlation of the solubility of alkali chlorides in different solvent mixtures and temperatures

Prediction and correlation of the solubility of alkali chlorides in different solvent mixtures... Based on the Pitzer model modified by Wu et al. for polymer-salt-aqueous two-phase ternary systems at ambient temperature, this work aims to extend such a model to quaternary systems consisting of a polymer, two salts, and water at different temperatures. This new model is applied to the correlation and prediction of the liquid-solid equilibrium (LSE) of the quaternary systems NaCl+KCl+PEG4000+H2O at 298 K and NaCl+KCl+C2H5OH+H2O at 298 and 313 K. The model contains six binary parameters and ten mixture parameters. The binary parameters are estimated from the liquid-vapor equilibrium (LVE) data of the corresponding salt-water binary systems, while the mixture parameters are obtained from solubility data of ternary systems. The results show that the predicted solubility values of the salt in the quaternary systems are consistent with the experimental data reported in the literature. Better agreement is obtained when the polymer-salt-salt mixture parameter is included. The influence of temperature and the solvent type on the parameters are also discussed in this work. The results provide useful information for the simulation of extractive crystallization processes of inorganic salts with a polymer or an alcohol as the solvent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fluid Phase Equilibria Elsevier

Prediction and correlation of the solubility of alkali chlorides in different solvent mixtures and temperatures

Loading next page...
 
/lp/elsevier/prediction-and-correlation-of-the-solubility-of-alkali-chlorides-in-HWGLopyge0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-3812
eISSN
1879-0224
D.O.I.
10.1016/j.fluid.2018.01.001
Publisher site
See Article on Publisher Site

Abstract

Based on the Pitzer model modified by Wu et al. for polymer-salt-aqueous two-phase ternary systems at ambient temperature, this work aims to extend such a model to quaternary systems consisting of a polymer, two salts, and water at different temperatures. This new model is applied to the correlation and prediction of the liquid-solid equilibrium (LSE) of the quaternary systems NaCl+KCl+PEG4000+H2O at 298 K and NaCl+KCl+C2H5OH+H2O at 298 and 313 K. The model contains six binary parameters and ten mixture parameters. The binary parameters are estimated from the liquid-vapor equilibrium (LVE) data of the corresponding salt-water binary systems, while the mixture parameters are obtained from solubility data of ternary systems. The results show that the predicted solubility values of the salt in the quaternary systems are consistent with the experimental data reported in the literature. Better agreement is obtained when the polymer-salt-salt mixture parameter is included. The influence of temperature and the solvent type on the parameters are also discussed in this work. The results provide useful information for the simulation of extractive crystallization processes of inorganic salts with a polymer or an alcohol as the solvent.

Journal

Fluid Phase EquilibriaElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off