Predicting the width and average fracture frequency of damage zones using a partial least squares statistical analysis: Implications for fault zone development

Predicting the width and average fracture frequency of damage zones using a partial least squares... We introduce the partial least squares (PLS) statistical analysis that quantifies and predicts the observed relationships among normal fault slip, fracturing associated with the fault, and lithology. We describe the systematic process for constructing a multivariate PLS model that predicts the average fracture frequency and the width of fracture-dominated fault damage zones from fault, lithologic and fracture data. Conversely, the model can also predict normal fault net slip for a defined lithology given the average fracture frequency and width of a fracture-dominated fault damage zone, hereafter defined as a fracture intensification domain (FID). Fracture, fault and lithologic data were collected in the Mohawk Valley of New York State from outcrops in the Upper Ordovician Utica Group and Lorraine Group. Data collection was focused on faults with observable slip, associated FIDs, and no observable lateral restriction. Our statistical analysis used three variables to describe the geometry of the FID: FID width (FIDw), average fracture frequency within the FID (FIDƒ), and the power law regression exponent (FIDR) of the least squares trend line. We incorporated additional data from literature and tested multiple PLS models in order to refine the analysis using quality indicators provided by the PLS summary statistics output. Variables included in the final predictive model included FIDw, FIDƒ, fault slip, grain size and clay percent. Fault slip and grain size were found to have a positive covariance with FIDw while clay percent had a negative covariance. Fault slip, grain size and clay percent all showed a negative covariance with FIDƒ. Results from this research indicate that increasing fault slip leads to wider FIDs and lower average fracture frequency within the FID. The lower average fracture frequency in wider FIDs is primarily attributed to an increase in the length of the low-frequency FID tail away from the associated fault. A possible secondary influence reducing fracture frequency is due to the progressive development of a fault core at the expense of the adjacent damage zone and the consumption of the highest-frequency fractures adjacent to the fault surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Geology Elsevier

Predicting the width and average fracture frequency of damage zones using a partial least squares statistical analysis: Implications for fault zone development

Loading next page...
 
/lp/elsevier/predicting-the-width-and-average-fracture-frequency-of-damage-zones-ltR0My5uhA
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0191-8141
eISSN
1873-1201
D.O.I.
10.1016/j.jsg.2017.03.008
Publisher site
See Article on Publisher Site

Abstract

We introduce the partial least squares (PLS) statistical analysis that quantifies and predicts the observed relationships among normal fault slip, fracturing associated with the fault, and lithology. We describe the systematic process for constructing a multivariate PLS model that predicts the average fracture frequency and the width of fracture-dominated fault damage zones from fault, lithologic and fracture data. Conversely, the model can also predict normal fault net slip for a defined lithology given the average fracture frequency and width of a fracture-dominated fault damage zone, hereafter defined as a fracture intensification domain (FID). Fracture, fault and lithologic data were collected in the Mohawk Valley of New York State from outcrops in the Upper Ordovician Utica Group and Lorraine Group. Data collection was focused on faults with observable slip, associated FIDs, and no observable lateral restriction. Our statistical analysis used three variables to describe the geometry of the FID: FID width (FIDw), average fracture frequency within the FID (FIDƒ), and the power law regression exponent (FIDR) of the least squares trend line. We incorporated additional data from literature and tested multiple PLS models in order to refine the analysis using quality indicators provided by the PLS summary statistics output. Variables included in the final predictive model included FIDw, FIDƒ, fault slip, grain size and clay percent. Fault slip and grain size were found to have a positive covariance with FIDw while clay percent had a negative covariance. Fault slip, grain size and clay percent all showed a negative covariance with FIDƒ. Results from this research indicate that increasing fault slip leads to wider FIDs and lower average fracture frequency within the FID. The lower average fracture frequency in wider FIDs is primarily attributed to an increase in the length of the low-frequency FID tail away from the associated fault. A possible secondary influence reducing fracture frequency is due to the progressive development of a fault core at the expense of the adjacent damage zone and the consumption of the highest-frequency fractures adjacent to the fault surface.

Journal

Journal of Structural GeologyElsevier

Published: May 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off