Predicting stream nitrogen concentration from watershed features using neural networks

Predicting stream nitrogen concentration from watershed features using neural networks The present work describes the development and validation of an artificial neural network (ANN) for the purpose of estimating inorganic and total nitrogen concentrations. The ANN approach has been developed and tested using 927 nonpoint source watersheds studied for relationships between macro-drainage area characteristics and nutrient levels in streams. The ANN had eight independent input variables of watershed parameters (five on land use features, mean annual precipitation, animal unit density and mean stream flow) and two dependent output variables (total and inorganic nitrogen concentrations in the stream). The predictive quality of ANN models was judged with “hold-out” validation procedures. After ANN learning with the training set of data, we obtained a correlation coefficient r of about 0.85 in the testing set. Thus, ANNs are capable of learning the relationships between drainage area characteristics and nitrogen levels in streams, and show a high ability to predict from the new data set. On the basis of the sensitivity analyses we established the relationship between nitrogen concentration and the eight environmental variables. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Predicting stream nitrogen concentration from watershed features using neural networks

Loading next page...
 
/lp/elsevier/predicting-stream-nitrogen-concentration-from-watershed-features-using-itvyhCIJxa
Publisher
Elsevier
Copyright
Copyright © 1999 Elsevier Science Ltd
ISSN
0043-1354
D.O.I.
10.1016/S0043-1354(99)00061-5
Publisher site
See Article on Publisher Site

Abstract

The present work describes the development and validation of an artificial neural network (ANN) for the purpose of estimating inorganic and total nitrogen concentrations. The ANN approach has been developed and tested using 927 nonpoint source watersheds studied for relationships between macro-drainage area characteristics and nutrient levels in streams. The ANN had eight independent input variables of watershed parameters (five on land use features, mean annual precipitation, animal unit density and mean stream flow) and two dependent output variables (total and inorganic nitrogen concentrations in the stream). The predictive quality of ANN models was judged with “hold-out” validation procedures. After ANN learning with the training set of data, we obtained a correlation coefficient r of about 0.85 in the testing set. Thus, ANNs are capable of learning the relationships between drainage area characteristics and nitrogen levels in streams, and show a high ability to predict from the new data set. On the basis of the sensitivity analyses we established the relationship between nitrogen concentration and the eight environmental variables.

Journal

Water ResearchElsevier

Published: Nov 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off