Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns

Predicting species spatial distributions using presence-only data: a case study of native New... Identification of areas containing high biological diversity (‘hotspots’) from species presence-only data has become increasingly important in species and ecosystem management when presence/absence data is unavailable. However, as presence-only data sets lack any information on absences and as they suffer from many biases associated with the ad hoc or non-stratified sampling, they are often assumed problematic and inadequate for most statistical modeling methods. In this paper, this supposition is investigated by comparing generalized additive models (GAM) fitted with 43 native New Zealand fern species presence/absence data, obtained from a survey of 19 875 forested plots, to GAM models and ecological niche factor analysis (ENFA) models fitted with identical presence data and, in the case of GAM models, computer generated ‘pseudo’ absences. By using the same presence data for all models, absence data is isolated as the varying factor allowing different techniques for generating ‘pseudo’ absences used in the GAM models to be analyzed and compared over three principal levels of investigation. GAM models fitted with an environmentally weighted distribution of ‘pseudo’ absences and ENFA models selected environmental variables more similar to the GAM presence/absence models than did the GAM models fitted with randomly distributed ‘pseudo’ absences. Average contributions for the GAM presence/absence model showed mean annual temperature and mean annual solar radiation as the most important factors followed by lithology. Comparisons of prediction results show GAM models incorporating an environmentally weighted distribution of ‘pseudo’ absences to be more closely correlated to the GAM presence/absence models than either the GAM models fitted with randomly selected ‘pseudo’ absences or the ENFA models. ENFA models were found to be the least correlated to the GAM presence/absence models. These latter models were also shown to give the most optimistic predictions overall, however, as ENFA predicts habitat suitability rather than probability of presence this was expected. Summation of species predictions used as a measure of species potential biodiversity ‘hotspots’ also shows ENFA models to give the highest and largest distribution of potential biodiversity. Additionally, GAM models incorporating ‘pseudo’ absences were more highly correlated to the GAM presence/absence model than was ENFA. However, ENFA identified more areas of potential biodiversity ‘hotspots’ similar to the GAM presence/absence model, than either GAM model incorporating ‘pseudo’ absences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns

Loading next page...
 
/lp/elsevier/predicting-species-spatial-distributions-using-presence-only-data-a-y9aBPleg6Z
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0304-3800
eISSN
1872-7026
D.O.I.
10.1016/S0304-3800(02)00199-0
Publisher site
See Article on Publisher Site

Abstract

Identification of areas containing high biological diversity (‘hotspots’) from species presence-only data has become increasingly important in species and ecosystem management when presence/absence data is unavailable. However, as presence-only data sets lack any information on absences and as they suffer from many biases associated with the ad hoc or non-stratified sampling, they are often assumed problematic and inadequate for most statistical modeling methods. In this paper, this supposition is investigated by comparing generalized additive models (GAM) fitted with 43 native New Zealand fern species presence/absence data, obtained from a survey of 19 875 forested plots, to GAM models and ecological niche factor analysis (ENFA) models fitted with identical presence data and, in the case of GAM models, computer generated ‘pseudo’ absences. By using the same presence data for all models, absence data is isolated as the varying factor allowing different techniques for generating ‘pseudo’ absences used in the GAM models to be analyzed and compared over three principal levels of investigation. GAM models fitted with an environmentally weighted distribution of ‘pseudo’ absences and ENFA models selected environmental variables more similar to the GAM presence/absence models than did the GAM models fitted with randomly distributed ‘pseudo’ absences. Average contributions for the GAM presence/absence model showed mean annual temperature and mean annual solar radiation as the most important factors followed by lithology. Comparisons of prediction results show GAM models incorporating an environmentally weighted distribution of ‘pseudo’ absences to be more closely correlated to the GAM presence/absence models than either the GAM models fitted with randomly selected ‘pseudo’ absences or the ENFA models. ENFA models were found to be the least correlated to the GAM presence/absence models. These latter models were also shown to give the most optimistic predictions overall, however, as ENFA predicts habitat suitability rather than probability of presence this was expected. Summation of species predictions used as a measure of species potential biodiversity ‘hotspots’ also shows ENFA models to give the highest and largest distribution of potential biodiversity. Additionally, GAM models incorporating ‘pseudo’ absences were more highly correlated to the GAM presence/absence model than was ENFA. However, ENFA identified more areas of potential biodiversity ‘hotspots’ similar to the GAM presence/absence model, than either GAM model incorporating ‘pseudo’ absences.

Journal

Ecological ModellingElsevier

Published: Nov 30, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off