Predicting cadmium and lead toxicities in zebrafish (Danio rerio) larvae by using a toxicokinetic–toxicodynamic model that considers the effects of cations

Predicting cadmium and lead toxicities in zebrafish (Danio rerio) larvae by using a... Protons and cations may affect metal accumulation in aquatic organisms and further influence metal toxicity. The effects of K+, Na+, Ca2+, Mg2+, and H+ on the accumulation and toxicity of Cd and Pb in zebrafish larvae after 24 h exposure were examined. We found that Na+, Ca2+, Mg2+, and H+ exerted significant effects on both the accumulation and toxicity of Cd, and Ca2+, Mg2+, and H+ also affected both the accumulation and toxicity of Pb significantly. Subsequently, stability constants for the binding of Pb2+, Cd2+, K+, Ca2+, Mg2+, Na+, and H+ to biotic ligand were estimated with the Langmuir model and biotic ligand model (BLM). Using the BLM-estimated binding constants calculated with toxicity data, a refined toxicokinetic-toxicodynamic (TK-TD) model considering cation competition effects was used to predict Cd and Pb accumulation and survival rates in zebrafish larvae with varying cation concentrations. Results showed that the developed TK-TD model could successfully predict Cd and Pb toxicity to zebrafish larvae as a function of major competitive cations. The TK-TD model incorporated cation competition effects is a promising tool to quantify and assess the metal risk in natural water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Predicting cadmium and lead toxicities in zebrafish (Danio rerio) larvae by using a toxicokinetic–toxicodynamic model that considers the effects of cations

Loading next page...
 
/lp/elsevier/predicting-cadmium-and-lead-toxicities-in-zebrafish-danio-rerio-larvae-ds0RLsMg7Z
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.068
Publisher site
See Article on Publisher Site

Abstract

Protons and cations may affect metal accumulation in aquatic organisms and further influence metal toxicity. The effects of K+, Na+, Ca2+, Mg2+, and H+ on the accumulation and toxicity of Cd and Pb in zebrafish larvae after 24 h exposure were examined. We found that Na+, Ca2+, Mg2+, and H+ exerted significant effects on both the accumulation and toxicity of Cd, and Ca2+, Mg2+, and H+ also affected both the accumulation and toxicity of Pb significantly. Subsequently, stability constants for the binding of Pb2+, Cd2+, K+, Ca2+, Mg2+, Na+, and H+ to biotic ligand were estimated with the Langmuir model and biotic ligand model (BLM). Using the BLM-estimated binding constants calculated with toxicity data, a refined toxicokinetic-toxicodynamic (TK-TD) model considering cation competition effects was used to predict Cd and Pb accumulation and survival rates in zebrafish larvae with varying cation concentrations. Results showed that the developed TK-TD model could successfully predict Cd and Pb toxicity to zebrafish larvae as a function of major competitive cations. The TK-TD model incorporated cation competition effects is a promising tool to quantify and assess the metal risk in natural water.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off