Pre- and postnatal bisphenol A treatment does not alter the number of tyrosine hydroxylase-positive cells in the anteroventral periventricular nucleus (AVPV) of weanling male and female rats

Pre- and postnatal bisphenol A treatment does not alter the number of tyrosine... Exposure to Bisphenol A (BPA) may interfere with brain sexual differentiation. Altered numbers of tyrosine hydroxylase (TH) cells in the rodent anteroventral periventricular nucleus (AVPV) after developmental BPA treatment have been reported; however, definitive conclusions are lacking. The current study incorporated many of the guidelines suggested for endocrine disrupter research. Specifically, ethinyl estradiol (EE2) served as a reference estrogen, exogenous environmental estrogen exposure was controlled, BPA was administered orally, and subjects consumed a low phytoestrogen diet. Here, on gestational days 6–21, Sprague-Dawley rats (10–15/group) were gavaged with 2.5 or 25.0µg BPA/kg/day or 5.0 or 10.0µg EE2/kg/day or the vehicle (5ml of 0.3% aqueous carboxymethylcellulose/kg/day). A naïve control group was weighed and restrained, but not gavaged. Beginning on postnatal day (PND) 1 and continuing until PND 21, the 4 pups/sex/litter were orally treated with the same dose their dam had received. On PND 21, 1/sex/litter was perfused and the brain removed. TH immunoreactivity (TH-ir) was counted in 8 images/pup by a technician blind to treatment status. ANOVA results indicated significantly higher TH-ir cells/mm2 in females (main effect of sex: p<0.01); however, there was no significant effect of treatment or a significant interaction of treatment with sex. In a separate untreated group of PND 21 Sprague-Dawley pups, AVPV volume was quantified and no significant sexual dimorphism was apparent. Similar to our reported results of behavioral assessments, the BPA treatment paradigm used here (2.5 or 25.0µg BPA/kg/day administered orally) does not appear to cause significant alterations in AVPV TH-ir. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Pre- and postnatal bisphenol A treatment does not alter the number of tyrosine hydroxylase-positive cells in the anteroventral periventricular nucleus (AVPV) of weanling male and female rats

Loading next page...
 
/lp/elsevier/pre-and-postnatal-bisphenol-a-treatment-does-not-alter-the-number-of-wRrSxbM8kt
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0006-8993
D.O.I.
10.1016/j.brainres.2015.07.013
Publisher site
See Article on Publisher Site

Abstract

Exposure to Bisphenol A (BPA) may interfere with brain sexual differentiation. Altered numbers of tyrosine hydroxylase (TH) cells in the rodent anteroventral periventricular nucleus (AVPV) after developmental BPA treatment have been reported; however, definitive conclusions are lacking. The current study incorporated many of the guidelines suggested for endocrine disrupter research. Specifically, ethinyl estradiol (EE2) served as a reference estrogen, exogenous environmental estrogen exposure was controlled, BPA was administered orally, and subjects consumed a low phytoestrogen diet. Here, on gestational days 6–21, Sprague-Dawley rats (10–15/group) were gavaged with 2.5 or 25.0µg BPA/kg/day or 5.0 or 10.0µg EE2/kg/day or the vehicle (5ml of 0.3% aqueous carboxymethylcellulose/kg/day). A naïve control group was weighed and restrained, but not gavaged. Beginning on postnatal day (PND) 1 and continuing until PND 21, the 4 pups/sex/litter were orally treated with the same dose their dam had received. On PND 21, 1/sex/litter was perfused and the brain removed. TH immunoreactivity (TH-ir) was counted in 8 images/pup by a technician blind to treatment status. ANOVA results indicated significantly higher TH-ir cells/mm2 in females (main effect of sex: p<0.01); however, there was no significant effect of treatment or a significant interaction of treatment with sex. In a separate untreated group of PND 21 Sprague-Dawley pups, AVPV volume was quantified and no significant sexual dimorphism was apparent. Similar to our reported results of behavioral assessments, the BPA treatment paradigm used here (2.5 or 25.0µg BPA/kg/day administered orally) does not appear to cause significant alterations in AVPV TH-ir.

Journal

Brain ResearchElsevier

Published: Oct 22, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off