Practical engineering approaches and infrastructure to address the problem of marine debris in Korea

Practical engineering approaches and infrastructure to address the problem of marine debris in Korea As a solution to the problem of persistent solid marine debris, a nationwide project began in Korea in 1999 to develop and popularize fundamental changes to the infrastructure. The ten year project, called “A Practical Integrated System for Marine Debris,” consists of four linked types of technology: prevention, deep-water survey, removal and treatment (recycling). These reflect the characteristics of marine debris, which though widespread, vary by location and time of generation. Each technical component has each representative outcome that has been outreached the local governments and marine debris-related associations. The in situ infrastructures lead to enhance the retrieval of the marine debris and create direct and indirect benefits to industry. Both end-of-pipe technology improvement and the introduction of front-of-pipe technology should be considered as we strive to reduce the generation of marine debris in Korean coastal areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Pollution Bulletin Elsevier

Practical engineering approaches and infrastructure to address the problem of marine debris in Korea

Loading next page...
 
/lp/elsevier/practical-engineering-approaches-and-infrastructure-to-address-the-TF547UtBNm
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier Ltd
ISSN
0025-326X
eISSN
1879-3363
D.O.I.
10.1016/j.marpolbul.2010.04.016
Publisher site
See Article on Publisher Site

Abstract

As a solution to the problem of persistent solid marine debris, a nationwide project began in Korea in 1999 to develop and popularize fundamental changes to the infrastructure. The ten year project, called “A Practical Integrated System for Marine Debris,” consists of four linked types of technology: prevention, deep-water survey, removal and treatment (recycling). These reflect the characteristics of marine debris, which though widespread, vary by location and time of generation. Each technical component has each representative outcome that has been outreached the local governments and marine debris-related associations. The in situ infrastructures lead to enhance the retrieval of the marine debris and create direct and indirect benefits to industry. Both end-of-pipe technology improvement and the introduction of front-of-pipe technology should be considered as we strive to reduce the generation of marine debris in Korean coastal areas.

Journal

Marine Pollution BulletinElsevier

Published: Sep 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off