Practical and efficient algorithms for the geometric hitting set problem

Practical and efficient algorithms for the geometric hitting set problem The geometric hitting set problem is one of the basic geometric combinatorial optimization problems: given a set P of points and a set D of geometric objects in the plane, the goal is to compute a small-sized subset of P that hits all objects in D . Recently Agarwal and Pan (2014) presented a near-linear time algorithm for the case where D consists of disks in the plane. The algorithm uses sophisticated geometric tools and data structures with large resulting constants. In this paper, we design a hitting-set algorithm for this case without the use of these data-structures, and present experimental evidence that our new algorithm has near-linear running time in practice, and computes hitting sets within 1.3-factor of the optimal hitting set. We further present dnet, a public source-code module that incorporates this improvement, enabling fast and efficient computation of small-sized hitting sets in practice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Discrete Applied Mathematics Elsevier

Practical and efficient algorithms for the geometric hitting set problem

Loading next page...
 
/lp/elsevier/practical-and-efficient-algorithms-for-the-geometric-hitting-set-WhzNiF8oBa
Publisher
North-Holland
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0166-218X
D.O.I.
10.1016/j.dam.2017.12.018
Publisher site
See Article on Publisher Site

Abstract

The geometric hitting set problem is one of the basic geometric combinatorial optimization problems: given a set P of points and a set D of geometric objects in the plane, the goal is to compute a small-sized subset of P that hits all objects in D . Recently Agarwal and Pan (2014) presented a near-linear time algorithm for the case where D consists of disks in the plane. The algorithm uses sophisticated geometric tools and data structures with large resulting constants. In this paper, we design a hitting-set algorithm for this case without the use of these data-structures, and present experimental evidence that our new algorithm has near-linear running time in practice, and computes hitting sets within 1.3-factor of the optimal hitting set. We further present dnet, a public source-code module that incorporates this improvement, enabling fast and efficient computation of small-sized hitting sets in practice.

Journal

Discrete Applied MathematicsElsevier

Published: May 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off