PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under cold exposure in C57BL/6 mice

PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under... Brown and beige adipose tissues play key roles in adaptive thermogenesis, which is essential for homoiotherms to maintain core temperature under cold exposure. PPARγ is a transcriptional regulator critical for brown adipose tissue (BAT) recruitment and white adipose tissue (WAT) browning. Here we evaluated the impact of PPARγ activation on thermogenic activity in C57BL/6 mice under thermo-neutral and 4 °C cold environment, and revealed the regulating mechanism and metabolic basis. Rosiglitazone slowed body temperature loss in cold environment in C57BL/6 mice, suppressed cold-induced decreases in blood glucose, reversed cold-promoted 18F-FDG uptake, and increased lipid consumption in BAT. Serum/adipose tissue metabolomic and transcriptomic analyses revealed that cold exposure and rosiglitazone affect metabolism in different way, especially in terms of free fatty acid/lipid metabolism. While all tested treatments stimulated stored-substance mobilization in epididymal WAT, in heat-generating adipose tissues (BAT and subcutaneous WAT), rosiglitazone-only treatment promoted the storage of substances such as lipids for subsequent thermogenic activation; conversely, cold exposure favoured glucose consumption and mobilization/transport of extracellular lipids. When combined with cold exposure, rosiglitazone treatment preferentially triggered BAT lipid consumption, mobilized and transported lipids from epididymal to subcutaneous WAT, and reduced glucose usage. Thus, rosiglitazone might promote thermogenesis under cold exposure by switching fuel preference. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Proteomics Elsevier

PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under cold exposure in C57BL/6 mice

Loading next page...
 
/lp/elsevier/ppar-agonist-rosiglitazone-switches-fuel-preference-to-lipids-in-i0HWN1Jswq
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1874-3919
eISSN
1876-7737
D.O.I.
10.1016/j.jprot.2018.01.010
Publisher site
See Article on Publisher Site

Abstract

Brown and beige adipose tissues play key roles in adaptive thermogenesis, which is essential for homoiotherms to maintain core temperature under cold exposure. PPARγ is a transcriptional regulator critical for brown adipose tissue (BAT) recruitment and white adipose tissue (WAT) browning. Here we evaluated the impact of PPARγ activation on thermogenic activity in C57BL/6 mice under thermo-neutral and 4 °C cold environment, and revealed the regulating mechanism and metabolic basis. Rosiglitazone slowed body temperature loss in cold environment in C57BL/6 mice, suppressed cold-induced decreases in blood glucose, reversed cold-promoted 18F-FDG uptake, and increased lipid consumption in BAT. Serum/adipose tissue metabolomic and transcriptomic analyses revealed that cold exposure and rosiglitazone affect metabolism in different way, especially in terms of free fatty acid/lipid metabolism. While all tested treatments stimulated stored-substance mobilization in epididymal WAT, in heat-generating adipose tissues (BAT and subcutaneous WAT), rosiglitazone-only treatment promoted the storage of substances such as lipids for subsequent thermogenic activation; conversely, cold exposure favoured glucose consumption and mobilization/transport of extracellular lipids. When combined with cold exposure, rosiglitazone treatment preferentially triggered BAT lipid consumption, mobilized and transported lipids from epididymal to subcutaneous WAT, and reduced glucose usage. Thus, rosiglitazone might promote thermogenesis under cold exposure by switching fuel preference.

Journal

Journal of ProteomicsElsevier

Published: Mar 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off