Potential of near-infrared spectroscopy for quality evaluation of cattle leather

Potential of near-infrared spectroscopy for quality evaluation of cattle leather Models using near-infrared spectroscopy (NIRS) were constructed based on physical-mechanical tests to determine the quality of cattle leather. The following official parameters were used, considering the industry requirements: tensile strength (TS), percentage elongation (%E), tear strength (TT), and double hole tear strength (DHS). Classification models were constructed with the use of k-nearest neighbor (kNN), soft independent modeling of class analogy (SIMCA), and partial least squares–discriminant analysis (PLS-DA). The evaluated figures of merit, accuracy, sensitivity, and specificity presented results between 85% and 93%, and the false alarm rates from 9% to 14%. The model with lowest validation percentage (92%) was kNN, and the highest was PLS-DA (100%). For TS, lower values were obtained, from 52% for kNN and 74% for SIMCA. The other parameters %E, TT, and DHS presented hit rates between 87 and 100%. The abilities of the models were similar, showing they can be used to predict the quality of cattle leather. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Elsevier

Loading next page...
 
/lp/elsevier/potential-of-near-infrared-spectroscopy-for-quality-evaluation-of-IG00N4H0vV
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1386-1425
D.O.I.
10.1016/j.saa.2018.05.025
Publisher site
See Article on Publisher Site

Abstract

Models using near-infrared spectroscopy (NIRS) were constructed based on physical-mechanical tests to determine the quality of cattle leather. The following official parameters were used, considering the industry requirements: tensile strength (TS), percentage elongation (%E), tear strength (TT), and double hole tear strength (DHS). Classification models were constructed with the use of k-nearest neighbor (kNN), soft independent modeling of class analogy (SIMCA), and partial least squares–discriminant analysis (PLS-DA). The evaluated figures of merit, accuracy, sensitivity, and specificity presented results between 85% and 93%, and the false alarm rates from 9% to 14%. The model with lowest validation percentage (92%) was kNN, and the highest was PLS-DA (100%). For TS, lower values were obtained, from 52% for kNN and 74% for SIMCA. The other parameters %E, TT, and DHS presented hit rates between 87 and 100%. The abilities of the models were similar, showing they can be used to predict the quality of cattle leather.

Journal

Spectrochimica Acta Part A: Molecular and Biomolecular SpectroscopyElsevier

Published: Sep 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off