Potential impacts of offshore oil spills on polar bears in the Chukchi Sea

Potential impacts of offshore oil spills on polar bears in the Chukchi Sea Sea ice decline is anticipated to increase human access to the Arctic Ocean allowing for offshore oil and gas development in once inaccessible areas. Given the potential negative consequences of an oil spill on marine wildlife populations in the Arctic, it is important to understand the magnitude of impact a large spill could have on wildlife to inform response planning efforts. In this study we simulated oil spills that released 25,000 barrels of oil for 30 days in autumn originating from two sites in the Chukchi Sea (one in Russia and one in the U.S.) and tracked the distribution of oil for 76 days. We then determined the potential impact such a spill might have on polar bears (Ursus maritimus) and their habitat by overlapping spills with maps of polar bear habitat and movement trajectories. Only a small proportion (1–10%) of high-value polar bear sea ice habitat was directly affected by oil sufficient to impact bears. However, 27–38% of polar bears in the region were potentially exposed to oil. Oil consistently had the highest probability of reaching Wrangel and Herald islands, important areas of denning and summer terrestrial habitat. Oil did not reach polar bears until approximately 3 weeks after the spills. Our study found the potential for significant impacts to polar bears under a worst case discharge scenario, but suggests that there is a window of time where effective containment efforts could minimize exposure to bears. Our study provides a framework for wildlife managers and planners to assess the level of response that would be required to treat exposed wildlife and where spill response equipment might be best stationed. While the size of spill we simulated has a low probability of occurring, it provides an upper limit for planners to consider when crafting response plans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Potential impacts of offshore oil spills on polar bears in the Chukchi Sea

Loading next page...
 
/lp/elsevier/potential-impacts-of-offshore-oil-spills-on-polar-bears-in-the-chukchi-hY58UqH5fK
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.057
Publisher site
See Article on Publisher Site

Abstract

Sea ice decline is anticipated to increase human access to the Arctic Ocean allowing for offshore oil and gas development in once inaccessible areas. Given the potential negative consequences of an oil spill on marine wildlife populations in the Arctic, it is important to understand the magnitude of impact a large spill could have on wildlife to inform response planning efforts. In this study we simulated oil spills that released 25,000 barrels of oil for 30 days in autumn originating from two sites in the Chukchi Sea (one in Russia and one in the U.S.) and tracked the distribution of oil for 76 days. We then determined the potential impact such a spill might have on polar bears (Ursus maritimus) and their habitat by overlapping spills with maps of polar bear habitat and movement trajectories. Only a small proportion (1–10%) of high-value polar bear sea ice habitat was directly affected by oil sufficient to impact bears. However, 27–38% of polar bears in the region were potentially exposed to oil. Oil consistently had the highest probability of reaching Wrangel and Herald islands, important areas of denning and summer terrestrial habitat. Oil did not reach polar bears until approximately 3 weeks after the spills. Our study found the potential for significant impacts to polar bears under a worst case discharge scenario, but suggests that there is a window of time where effective containment efforts could minimize exposure to bears. Our study provides a framework for wildlife managers and planners to assess the level of response that would be required to treat exposed wildlife and where spill response equipment might be best stationed. While the size of spill we simulated has a low probability of occurring, it provides an upper limit for planners to consider when crafting response plans.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off