Post-settlement Life Cycle Migration Patterns and Habitat Preference of Coral Reef Fish that use Seagrass and Mangrove Habitats as Nurseries

Post-settlement Life Cycle Migration Patterns and Habitat Preference of Coral Reef Fish that use... Mangroves and seagrass beds have received considerable attention as nurseries for reef fish, but comparisons have often been made with different methodologies. Thus, relative importance of different habitats to specific size-classes of reef fish species remains unclear. In this study, 35 transects in 11 sites of mangroves, seagrass beds and coral reef were surveyed daily, in and in front of a marine bay on the island of Curaçao (Netherlands Antilles). The density and size-frequency of nine reef fish species (including herbivores, zoobenthivores and piscivores) was determined during a five-month period using a single methodology, viz. underwater visual census. All species were ‘ nursery species ’ in terms of their high densities of juveniles in mangroves or seagrass beds. Relative density distribution of the size-classes of the selected species over mangroves and seagrass beds suggested high levels of preference for either mangroves or seagrass beds of some species, while other species used both habitats as a nursery. Spatial size distribution of the nine species suggested three possible models for Post-settlement Life Cycle Migrations (PLCM). Haemulon sciurus , Lutjanus griseus , L. apodus , and Acanthurus chirurgus appear to settle and grow up in bay habitats such as mangroves and seagrass beds, and in a later stage migrate to the coral reef (Long Distance PLCM). Juveniles of Acanthurus bahianus and Scarus taeniopterus were found only in bay habitats at close proximity to the coral reef or on the reef itself, and their migration pattern concerns a limited spatial scale (Short Distance PLCM). Some congeneric species carry out either Long Distance PLCM or Short Distance PLCM, thereby temporarily alleviating competition in reef habitats. Haemulon flavolineatum , Ocyurus chrysurus and Scarus iserti displayed a Stepwise PLCM pattern in which smallest juveniles dwell in the mouth of the bay, larger individuals then move to habitats deeper into the bay, where they grow up to a (sub-) adult size at which they migrate to nearby coral reef habitats. This type of stepwise migration in opposite directions, combined with different preference for either mangroves or seagrass beds among (size-classes of) species, shows that reef fish using in-bay habitats during post-settlement life stages may do so by choice and not merely because of stochastic dispersal of their larvae, and underline the necessity of these habitats to Caribbean coral reef systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuarine Coastal and Shelf Science Elsevier

Post-settlement Life Cycle Migration Patterns and Habitat Preference of Coral Reef Fish that use Seagrass and Mangrove Habitats as Nurseries

Loading next page...
 
/lp/elsevier/post-settlement-life-cycle-migration-patterns-and-habitat-preference-w8PhB5lGYW
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science Ltd
ISSN
0272-7714
eISSN
1096-0015
D.O.I.
10.1006/ecss.2001.0907
Publisher site
See Article on Publisher Site

Abstract

Mangroves and seagrass beds have received considerable attention as nurseries for reef fish, but comparisons have often been made with different methodologies. Thus, relative importance of different habitats to specific size-classes of reef fish species remains unclear. In this study, 35 transects in 11 sites of mangroves, seagrass beds and coral reef were surveyed daily, in and in front of a marine bay on the island of Curaçao (Netherlands Antilles). The density and size-frequency of nine reef fish species (including herbivores, zoobenthivores and piscivores) was determined during a five-month period using a single methodology, viz. underwater visual census. All species were ‘ nursery species ’ in terms of their high densities of juveniles in mangroves or seagrass beds. Relative density distribution of the size-classes of the selected species over mangroves and seagrass beds suggested high levels of preference for either mangroves or seagrass beds of some species, while other species used both habitats as a nursery. Spatial size distribution of the nine species suggested three possible models for Post-settlement Life Cycle Migrations (PLCM). Haemulon sciurus , Lutjanus griseus , L. apodus , and Acanthurus chirurgus appear to settle and grow up in bay habitats such as mangroves and seagrass beds, and in a later stage migrate to the coral reef (Long Distance PLCM). Juveniles of Acanthurus bahianus and Scarus taeniopterus were found only in bay habitats at close proximity to the coral reef or on the reef itself, and their migration pattern concerns a limited spatial scale (Short Distance PLCM). Some congeneric species carry out either Long Distance PLCM or Short Distance PLCM, thereby temporarily alleviating competition in reef habitats. Haemulon flavolineatum , Ocyurus chrysurus and Scarus iserti displayed a Stepwise PLCM pattern in which smallest juveniles dwell in the mouth of the bay, larger individuals then move to habitats deeper into the bay, where they grow up to a (sub-) adult size at which they migrate to nearby coral reef habitats. This type of stepwise migration in opposite directions, combined with different preference for either mangroves or seagrass beds among (size-classes of) species, shows that reef fish using in-bay habitats during post-settlement life stages may do so by choice and not merely because of stochastic dispersal of their larvae, and underline the necessity of these habitats to Caribbean coral reef systems.

Journal

Estuarine Coastal and Shelf ScienceElsevier

Published: Aug 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off