Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins and nanopores surface effects

Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins... In this paper, a size-dependent nonlinear higher order refined beam model is developed based on modified couple stress theory. Then, it is applied to investigate post-buckling behavior of multi-phase nanocrystalline silicon nanobeams with geometrical imperfection. Nanocrystalline materials (NcMs) are multi-phase composites with the contribution of nanopores, nanograins and interface phase. Because of experimental observation of strain gradients near interface phase, the nanobeam is modeled via strain gradient based couple stress theory. A micromechanical model based on Mori-Tanaka scheme is employed to incorporate the size of nanograins/nanopores and their surface energies. The post-buckling load-deflection relation is obtained by solving the governing equations having cubic nonlinearity applying Galerkin’s method needless of any iteration process. New results show the importance of porosity percentage, nanograins size, geometrical imperfection, couple stress parameter, foundation parameters and surface phase of nanograins/nanopores on nonlinear buckling behavior of NcM nanoscale beams. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins and nanopores surface effects

Loading next page...
 
/lp/elsevier/post-buckling-analysis-of-imperfect-multi-phase-nanocrystalline-mYzZjDMJAT
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.10.019
Publisher site
See Article on Publisher Site

Abstract

In this paper, a size-dependent nonlinear higher order refined beam model is developed based on modified couple stress theory. Then, it is applied to investigate post-buckling behavior of multi-phase nanocrystalline silicon nanobeams with geometrical imperfection. Nanocrystalline materials (NcMs) are multi-phase composites with the contribution of nanopores, nanograins and interface phase. Because of experimental observation of strain gradients near interface phase, the nanobeam is modeled via strain gradient based couple stress theory. A micromechanical model based on Mori-Tanaka scheme is employed to incorporate the size of nanograins/nanopores and their surface energies. The post-buckling load-deflection relation is obtained by solving the governing equations having cubic nonlinearity applying Galerkin’s method needless of any iteration process. New results show the importance of porosity percentage, nanograins size, geometrical imperfection, couple stress parameter, foundation parameters and surface phase of nanograins/nanopores on nonlinear buckling behavior of NcM nanoscale beams.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off