Positive definiteness of paired symmetric tensors and elasticity tensors

Positive definiteness of paired symmetric tensors and elasticity tensors In this paper, we consider higher order paired symmetric tensors and strongly paired symmetric tensors. Elasticity tensors and higher order elasticity tensors in solid mechanics are strongly paired symmetric tensors. A (strongly) paired symmetric tensor is said to be positive definite if the homogeneous polynomial defined by it is positive definite. Positive definiteness of elasticity and higher order elasticity tensors is strong ellipticity in solid mechanics, which plays an important role in nonlinear elasticity theory. We mainly investigate positive definiteness of fourth order three dimensional and sixth order three dimensional (strongly) paired symmetric tensors. We first show that the concerned (strongly) paired symmetric tensor is positive definite if and only if its smallest M -eigenvalue is positive. Second, we propose several necessary and sufficient conditions under which the concerned (strongly) paired symmetric tensor is positive definite. Third, we study the conditions under which the homogeneous polynomial defined by a fourth order three dimensional or sixth order three dimensional (strongly) paired symmetric tensor can be written as a sum of squares of polynomials, and further, propose several necessary and/or sufficient conditions to judge whether the concerned (strongly) paired symmetric tensors are positive definite or not. Fourth, by using semidefinite relaxation we propose a sequential semidefinite programming method to compute the smallest M -eigenvalue of a fourth order three dimensional (strongly) paired symmetric tensor, by which we can check positive definiteness of the concerned tensor. The preliminary numerical results confirm our theoretical findings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational and Applied Mathematics Elsevier

Positive definiteness of paired symmetric tensors and elasticity tensors

Loading next page...
 
/lp/elsevier/positive-definiteness-of-paired-symmetric-tensors-and-elasticity-DzcBbsD7NO
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0377-0427
eISSN
1879-1778
D.O.I.
10.1016/j.cam.2018.01.025
Publisher site
See Article on Publisher Site

Abstract

In this paper, we consider higher order paired symmetric tensors and strongly paired symmetric tensors. Elasticity tensors and higher order elasticity tensors in solid mechanics are strongly paired symmetric tensors. A (strongly) paired symmetric tensor is said to be positive definite if the homogeneous polynomial defined by it is positive definite. Positive definiteness of elasticity and higher order elasticity tensors is strong ellipticity in solid mechanics, which plays an important role in nonlinear elasticity theory. We mainly investigate positive definiteness of fourth order three dimensional and sixth order three dimensional (strongly) paired symmetric tensors. We first show that the concerned (strongly) paired symmetric tensor is positive definite if and only if its smallest M -eigenvalue is positive. Second, we propose several necessary and sufficient conditions under which the concerned (strongly) paired symmetric tensor is positive definite. Third, we study the conditions under which the homogeneous polynomial defined by a fourth order three dimensional or sixth order three dimensional (strongly) paired symmetric tensor can be written as a sum of squares of polynomials, and further, propose several necessary and/or sufficient conditions to judge whether the concerned (strongly) paired symmetric tensors are positive definite or not. Fourth, by using semidefinite relaxation we propose a sequential semidefinite programming method to compute the smallest M -eigenvalue of a fourth order three dimensional (strongly) paired symmetric tensor, by which we can check positive definiteness of the concerned tensor. The preliminary numerical results confirm our theoretical findings.

Journal

Journal of Computational and Applied MathematicsElsevier

Published: Aug 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial