Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal

Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle... Electrospun nanofibrous membranes were engineered for aerosol particle removal by controlling the fiber density and alignment across electrospun mats. Electrospun nanofiber membranes were deposited on both, rotatory drum and stationary collectors, to investigate the effect of fiber alignment on filtration performance. Poly(acrylonitrile)/dimethyl formamide (PAN/DMF) solutions were used to produce membranes for applications in air purification. The air filtration performance of as-produced and hot-compacted membranes were systematically evaluated with regard to penetration, pressure drop, and quality factor when subjected to potassium chloride (KCl) aerosol particles in the size-range of 300nm to 12μm. The membranes offered air filtration efficiencies in the range of 77.7% to 99.616% and quality factors between 0.0026 and 0.0204 (1/Pa). The samples were benchmarked against commercial filters and were found to exhibit similar quality factors but higher air filtration efficiencies. These results were correlated to differences in pore morphologies and fiber orientation distributions generated from the different processing techniques, which revealed that the alteration of the fiber density is an effective method for enhancing air filtration performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal

Loading next page...
 
/lp/elsevier/pore-engineering-towards-highly-efficient-electrospun-nanofibrous-6BCdEoRJHr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.342
Publisher site
See Article on Publisher Site

Abstract

Electrospun nanofibrous membranes were engineered for aerosol particle removal by controlling the fiber density and alignment across electrospun mats. Electrospun nanofiber membranes were deposited on both, rotatory drum and stationary collectors, to investigate the effect of fiber alignment on filtration performance. Poly(acrylonitrile)/dimethyl formamide (PAN/DMF) solutions were used to produce membranes for applications in air purification. The air filtration performance of as-produced and hot-compacted membranes were systematically evaluated with regard to penetration, pressure drop, and quality factor when subjected to potassium chloride (KCl) aerosol particles in the size-range of 300nm to 12μm. The membranes offered air filtration efficiencies in the range of 77.7% to 99.616% and quality factors between 0.0026 and 0.0204 (1/Pa). The samples were benchmarked against commercial filters and were found to exhibit similar quality factors but higher air filtration efficiencies. These results were correlated to differences in pore morphologies and fiber orientation distributions generated from the different processing techniques, which revealed that the alteration of the fiber density is an effective method for enhancing air filtration performance.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off