Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tractography study

Polygenic risk score for schizophrenia and structural brain connectivity in older age: A... Higher polygenic risk score for schizophrenia (szPGRS) has been associated with lower cognitive function and might be a predictor of decline in brain structure in apparently healthy populations. Age-related declines in structural brain connectivity—measured using white matter diffusion MRI —are evident from cross-sectional data. Yet, it remains unclear how graph theoretical metrics of the structural connectome change over time, and whether szPGRS is associated with differences in ageing-related changes in human brain connectivity. Here, we studied a large, relatively healthy, same-year-of-birth, older age cohort over a period of 3 years (age ∼ 73 years, N = 731; age ∼76 years, N = 488). From their brain scans we derived tract-averaged fractional anisotropy (FA) and mean diffusivity (MD), and network topology properties. We investigated the cross-sectional and longitudinal associations between these structural brain variables and szPGRS. Higher szPGRS showed significant associations with longitudinal increases in MD in the splenium (β = 0.132, pFDR = 0.040), arcuate (β = 0.291, pFDR = 0.040), anterior thalamic radiations (β = 0.215, pFDR = 0.040) and cingulum (β = 0.165, pFDR = 0.040). Significant declines over time were observed in graph theory metrics for FA-weighted networks, such as mean edge weight (β = −0.039, pFDR = 0.048) and strength (β = −0.027, pFDR = 0.048). No significant associations were found between szPGRS and graph theory metrics. These results are consistent with the hypothesis that szPGRS confers risk for ageing-related degradation of some aspects of structural connectivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tractography study

Loading next page...
 
/lp/elsevier/polygenic-risk-score-for-schizophrenia-and-structural-brain-KiIko0sb3J
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.08.075
Publisher site
See Article on Publisher Site

Abstract

Higher polygenic risk score for schizophrenia (szPGRS) has been associated with lower cognitive function and might be a predictor of decline in brain structure in apparently healthy populations. Age-related declines in structural brain connectivity—measured using white matter diffusion MRI —are evident from cross-sectional data. Yet, it remains unclear how graph theoretical metrics of the structural connectome change over time, and whether szPGRS is associated with differences in ageing-related changes in human brain connectivity. Here, we studied a large, relatively healthy, same-year-of-birth, older age cohort over a period of 3 years (age ∼ 73 years, N = 731; age ∼76 years, N = 488). From their brain scans we derived tract-averaged fractional anisotropy (FA) and mean diffusivity (MD), and network topology properties. We investigated the cross-sectional and longitudinal associations between these structural brain variables and szPGRS. Higher szPGRS showed significant associations with longitudinal increases in MD in the splenium (β = 0.132, pFDR = 0.040), arcuate (β = 0.291, pFDR = 0.040), anterior thalamic radiations (β = 0.215, pFDR = 0.040) and cingulum (β = 0.165, pFDR = 0.040). Significant declines over time were observed in graph theory metrics for FA-weighted networks, such as mean edge weight (β = −0.039, pFDR = 0.048) and strength (β = −0.027, pFDR = 0.048). No significant associations were found between szPGRS and graph theory metrics. These results are consistent with the hypothesis that szPGRS confers risk for ageing-related degradation of some aspects of structural connectivity.

Journal

NeuroimageElsevier

Published: Dec 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off