Polar-angle representation of saccadic eye movements in human superior colliculus

Polar-angle representation of saccadic eye movements in human superior colliculus The superior colliculus (SC) is a layered midbrain structure involved in directing both head and eye movements and coordinating visual attention. Although a retinotopic organization for the mediation of saccadic eye-movements has been shown in monkey SC, in human SC the topography of saccades has not been confirmed. Here, a novel experimental paradigm was performed by five participants (one female) while high-resolution (1.2-mm) functional magnetic resonance imaging was used to measure activity evoked by saccadic eye movements within human SC. Results provide three critical observations about the topography of the SC: (1) saccades along the superior-inferior visual axis are mapped across the medial-lateral anatomy of the SC; (2) the saccadic eye-movement representation is in register with the retinotopic organization of visual stimulation; and (3) activity evoked by saccades occurs deeper within SC than that evoked by visual stimulation. These approaches lay the foundation for studying the organization of human subcortical – and enhanced cortical mapping – of eye-movement mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Polar-angle representation of saccadic eye movements in human superior colliculus

Loading next page...
 
/lp/elsevier/polar-angle-representation-of-saccadic-eye-movements-in-human-superior-A4jjcWRz0b
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.080
Publisher site
See Article on Publisher Site

Abstract

The superior colliculus (SC) is a layered midbrain structure involved in directing both head and eye movements and coordinating visual attention. Although a retinotopic organization for the mediation of saccadic eye-movements has been shown in monkey SC, in human SC the topography of saccades has not been confirmed. Here, a novel experimental paradigm was performed by five participants (one female) while high-resolution (1.2-mm) functional magnetic resonance imaging was used to measure activity evoked by saccadic eye movements within human SC. Results provide three critical observations about the topography of the SC: (1) saccades along the superior-inferior visual axis are mapped across the medial-lateral anatomy of the SC; (2) the saccadic eye-movement representation is in register with the retinotopic organization of visual stimulation; and (3) activity evoked by saccades occurs deeper within SC than that evoked by visual stimulation. These approaches lay the foundation for studying the organization of human subcortical – and enhanced cortical mapping – of eye-movement mechanisms.

Journal

NeuroimageElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial