Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: An overview

Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic... A dense nationwide seismic network recently constructed in Japan has been yielding large volumes of high-quality data that have made it possible to investigate the seismic structure in the Japanese subduction zone with unprecedented resolution. In this article, recent studies on the subduction of the Philippine Sea and Pacific plates beneath the Japanese Islands and the mechanism of earthquake and magma generation associated with plate subduction are reviewed. Seismic tomographic studies have shown that the Philippine Sea plate subducting beneath southwest Japan is continuous throughout the entire region, from Kanto to Kyushu, without disruption or splitting even beneath the Izu Peninsula as suggested in the past. The contact of the Philippine Sea plate with the Pacific plate subducting below has been found to cause anomalously deep interplate and intraslab earthquake activity in Kanto. Detailed waveform inversion studies have revealed that the asperity model is applicable to interplate earthquakes. Analyses of dense seismic and GPS network data have confirmed the existence of episodic slow slip accompanied in many instances by low-frequency tremors/earthquakes on the plate interface, which are inferred to play an important role in stress loading at asperities. High-resolution studies of the spatial variation of intraslab seismicity and the seismic velocity structure of the slab crust strongly support the dehydration embrittlement hypothesis for the generation of intraslab earthquakes. Seismic tomography studies have shown that water released by dehydration of the slab and secondary convection in the mantle wedge, mechanically induced by slab subduction, are responsible for magma generation in the Japanese islands. Water of slab origin is also inferred to be responsible for large anelastic local deformation of the arc crust leading to inland crustal earthquakes that return the arc crust to a state of spatially uniform deformation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gondwana Research Elsevier

Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: An overview

Loading next page...
 
/lp/elsevier/plate-subduction-and-generation-of-earthquakes-and-magmas-in-japan-as-90FWUZvqtX
Publisher
Elsevier
Copyright
Copyright © 2009 International Association for Gondwana Research
ISSN
1342-937X
DOI
10.1016/j.gr.2009.03.007
Publisher site
See Article on Publisher Site

Abstract

A dense nationwide seismic network recently constructed in Japan has been yielding large volumes of high-quality data that have made it possible to investigate the seismic structure in the Japanese subduction zone with unprecedented resolution. In this article, recent studies on the subduction of the Philippine Sea and Pacific plates beneath the Japanese Islands and the mechanism of earthquake and magma generation associated with plate subduction are reviewed. Seismic tomographic studies have shown that the Philippine Sea plate subducting beneath southwest Japan is continuous throughout the entire region, from Kanto to Kyushu, without disruption or splitting even beneath the Izu Peninsula as suggested in the past. The contact of the Philippine Sea plate with the Pacific plate subducting below has been found to cause anomalously deep interplate and intraslab earthquake activity in Kanto. Detailed waveform inversion studies have revealed that the asperity model is applicable to interplate earthquakes. Analyses of dense seismic and GPS network data have confirmed the existence of episodic slow slip accompanied in many instances by low-frequency tremors/earthquakes on the plate interface, which are inferred to play an important role in stress loading at asperities. High-resolution studies of the spatial variation of intraslab seismicity and the seismic velocity structure of the slab crust strongly support the dehydration embrittlement hypothesis for the generation of intraslab earthquakes. Seismic tomography studies have shown that water released by dehydration of the slab and secondary convection in the mantle wedge, mechanically induced by slab subduction, are responsible for magma generation in the Japanese islands. Water of slab origin is also inferred to be responsible for large anelastic local deformation of the arc crust leading to inland crustal earthquakes that return the arc crust to a state of spatially uniform deformation.

Journal

Gondwana ResearchElsevier

Published: Dec 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off