Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes

Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes To date, no investigation has been carried out to explore the effects of biochars produced at different pyrolysis temperatures on the dynamics of redox potential (EH) and pH in a contaminated floodplain soil. Thus, we aimed to quantify the dynamics of EH and pH in contaminated flooded soils treated with 70tha−1 of pine sawdust biomass (S&BM) and biochars pyrolyzed at 300°C (S&BC300) and 550°C (S&BC550) and pre-incubated for 105days in an automated biogeochemical microcosm system. Microbial community composition was also determined via analyzing phospholipid fatty acid (PLFA).We found that BC300 and BC550 treatments substantially decreased (3–6.5%) and BM increased (~37%) the mean of soil EH compared to the untreated contaminated soil (CS).·The largest EH decline in S&BC550 was at the rate of −80mVh−1 at 10h while it was observed at 25h in S&BC300 and 20–25h in S&BM or CS, respectively. At high EH, a higher total PLFA biomass and microbial groups in the CS (71–87%) were found in comparison to treated soils. Higher aromaticity and ash content in BC550 than BC300 and BM led to the greater PLFA biomass and microbial groups which contributed to higher capacity of accepting and donating electrons in soil slurry and were probably one reason for the largest decrease in EH. Pine sawdust biomass and BCs have a noticeable influence in soil biogeochemical processes relevant to fluctuating redox conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes

Loading next page...
 
/lp/elsevier/pine-sawdust-biomass-and-biochars-at-different-pyrolysis-temperatures-OsW7Udqgmx
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.194
Publisher site
See Article on Publisher Site

Abstract

To date, no investigation has been carried out to explore the effects of biochars produced at different pyrolysis temperatures on the dynamics of redox potential (EH) and pH in a contaminated floodplain soil. Thus, we aimed to quantify the dynamics of EH and pH in contaminated flooded soils treated with 70tha−1 of pine sawdust biomass (S&BM) and biochars pyrolyzed at 300°C (S&BC300) and 550°C (S&BC550) and pre-incubated for 105days in an automated biogeochemical microcosm system. Microbial community composition was also determined via analyzing phospholipid fatty acid (PLFA).We found that BC300 and BC550 treatments substantially decreased (3–6.5%) and BM increased (~37%) the mean of soil EH compared to the untreated contaminated soil (CS).·The largest EH decline in S&BC550 was at the rate of −80mVh−1 at 10h while it was observed at 25h in S&BC300 and 20–25h in S&BM or CS, respectively. At high EH, a higher total PLFA biomass and microbial groups in the CS (71–87%) were found in comparison to treated soils. Higher aromaticity and ash content in BC550 than BC300 and BM led to the greater PLFA biomass and microbial groups which contributed to higher capacity of accepting and donating electrons in soil slurry and were probably one reason for the largest decrease in EH. Pine sawdust biomass and BCs have a noticeable influence in soil biogeochemical processes relevant to fluctuating redox conditions.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off