Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment

Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest... This study investigated the effects of biochar soil amendment on greenhouse gas (GHG) emissions in soils. Pine (Pinus koraiensis Siebold & Zucc.) sawdust biochar was produced at 300 and 550°C with and without steam activation (coded as BC300-S, BC550-S, BC300 and BC550, respectively). They were applied to forest and grassland soils at 1.5% (w/w) rate in a 100-day laboratory incubation experiment. Application of BC550 significantly reduced cumulative CO2 emission from the forest soil by 16.4% relative to the control (without biochar application), but not from the grassland soil. Biochar application did not have significant effects on CH4 uptake from either soil. Application of BC550 and BC550-S reduced the cumulative N2O emission by 27.5 and 31.5%, respectively, in the forest soil and 14.8 and 11.7%, respectively, in the grassland soil, as compared to the control. The effects of BC300 and BC300-S on cumulative CO2 and N2O emission was not significant in both soils, except for the significant reduction in cumulative N2O emission from the forest soil by BC300-S. The effect of BC550 and BC550-S on N2O emission persisted until the end of the 100-day incubation indicating possible long-term effects of these biochars. We conclude that BC550 and BC550-S had the highest potential to reduce CO2 and N2O emission in the 100-day laboratory incubation experiment. These biochars should be tested in long-term field trials to confirm their potential for mitigating CO2 and N2O fluxes in real ecosystems with a relevant time frame. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment

Loading next page...
 
/lp/elsevier/pine-sawdust-biochar-reduces-ghg-emission-by-decreasing-microbial-and-8ibrwcaziN
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.343
Publisher site
See Article on Publisher Site

Abstract

This study investigated the effects of biochar soil amendment on greenhouse gas (GHG) emissions in soils. Pine (Pinus koraiensis Siebold & Zucc.) sawdust biochar was produced at 300 and 550°C with and without steam activation (coded as BC300-S, BC550-S, BC300 and BC550, respectively). They were applied to forest and grassland soils at 1.5% (w/w) rate in a 100-day laboratory incubation experiment. Application of BC550 significantly reduced cumulative CO2 emission from the forest soil by 16.4% relative to the control (without biochar application), but not from the grassland soil. Biochar application did not have significant effects on CH4 uptake from either soil. Application of BC550 and BC550-S reduced the cumulative N2O emission by 27.5 and 31.5%, respectively, in the forest soil and 14.8 and 11.7%, respectively, in the grassland soil, as compared to the control. The effects of BC300 and BC300-S on cumulative CO2 and N2O emission was not significant in both soils, except for the significant reduction in cumulative N2O emission from the forest soil by BC300-S. The effect of BC550 and BC550-S on N2O emission persisted until the end of the 100-day incubation indicating possible long-term effects of these biochars. We conclude that BC550 and BC550-S had the highest potential to reduce CO2 and N2O emission in the 100-day laboratory incubation experiment. These biochars should be tested in long-term field trials to confirm their potential for mitigating CO2 and N2O fluxes in real ecosystems with a relevant time frame.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off