Phytoavailability of Cr in Silene vulgaris: The role of soil, plant genotype and bacterial rhizobiome

Phytoavailability of Cr in Silene vulgaris: The role of soil, plant genotype and bacterial... Understanding the metal behavior at the soil-root interface is of utmost significance for a successful implementation of phytoremediation. In this study, we investigated the differences in chromium (Cr) uptake, chemical changes in soil solution and the shifts in rhizosphere bacterial communities of two genotypes of Silene vulgaris (SV21, SV38) with different tolerance to Cr. A greenhouse experiment was performed in two soils that differed on pH and organic matter (OM) content. An industrial sludge with high content in Cr was used as pollution source. The soil solution in the rhizosphere was sample by Rhizon Soil Moisture Samplers. The total concentration of Cr reached the highest values in soil solution samplers from calcareous soils with poor contents in OM. Plants grown in this soil also increased the Cr uptake in roots of both genotypes, but the concentration was higher in genotype SV-38 than in SV21. The clustering analysis of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA fragments revealed major differences in bacterial community structure related to Cr pollution, followed by soil type and finally, plant genotype. Diversity indices based on DGGE profiles were the highest in alkaline soil, and between genotypes, values were significantly greater in SV38. Canonical correspondence analysis (CCA) showed that changes in bacterial community structure of rhizosphere were highly correlated with total Cr concentration and soil solution pH. The isolation and identification of S. vulgaris bacterial rhizosphere revealed a different composition according to soil type and plant genotype. Results suggested the potential role of Pseudomonas fluorescens on Cr mobilization and therefore, on enhanced metal bioavailability and may provide a starting point for further studies aimed at the combined use of tolerant plants and selected metal mobilizing rhizobacteria, in the microbial-assisted phytoremediation of Cr-polluted soils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Phytoavailability of Cr in Silene vulgaris: The role of soil, plant genotype and bacterial rhizobiome

Loading next page...
 
/lp/elsevier/phytoavailability-of-cr-in-silene-vulgaris-the-role-of-soil-plant-t00RnUgJ59
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.06.043
Publisher site
See Article on Publisher Site

Abstract

Understanding the metal behavior at the soil-root interface is of utmost significance for a successful implementation of phytoremediation. In this study, we investigated the differences in chromium (Cr) uptake, chemical changes in soil solution and the shifts in rhizosphere bacterial communities of two genotypes of Silene vulgaris (SV21, SV38) with different tolerance to Cr. A greenhouse experiment was performed in two soils that differed on pH and organic matter (OM) content. An industrial sludge with high content in Cr was used as pollution source. The soil solution in the rhizosphere was sample by Rhizon Soil Moisture Samplers. The total concentration of Cr reached the highest values in soil solution samplers from calcareous soils with poor contents in OM. Plants grown in this soil also increased the Cr uptake in roots of both genotypes, but the concentration was higher in genotype SV-38 than in SV21. The clustering analysis of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA fragments revealed major differences in bacterial community structure related to Cr pollution, followed by soil type and finally, plant genotype. Diversity indices based on DGGE profiles were the highest in alkaline soil, and between genotypes, values were significantly greater in SV38. Canonical correspondence analysis (CCA) showed that changes in bacterial community structure of rhizosphere were highly correlated with total Cr concentration and soil solution pH. The isolation and identification of S. vulgaris bacterial rhizosphere revealed a different composition according to soil type and plant genotype. Results suggested the potential role of Pseudomonas fluorescens on Cr mobilization and therefore, on enhanced metal bioavailability and may provide a starting point for further studies aimed at the combined use of tolerant plants and selected metal mobilizing rhizobacteria, in the microbial-assisted phytoremediation of Cr-polluted soils.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off