Physiological and cognitive performance of exposure to biophilic indoor environment

Physiological and cognitive performance of exposure to biophilic indoor environment Biophilic design, which incorporates natural elements into the built environment, has received increasing attention in both the design and health fields. But research quantifying physiological and cognitive benefits of indoor biophilic features is sparse. This randomized crossover study examines the physiological and cognitive responses to natural elements in an office building. Twenty-eight participants spent time in an indoor environment featuring biophilic design elements and one without, with the order of the visit randomized. In each visit, they experienced the environment for 5-min in reality and virtually by using virtual reality (VR). Wearable sensors were used to measure blood pressure, galvanic skin response and heart rate. Cognitive tests were administrated after each exposure. The indoor biophilic environment was associated with a decrease in participants' blood pressure. The overall differential effects for participants experiencing an indoor environment with biophilic elements versus none was 8.6 mmHg lower systolic and 3.6 mmHg lower diastolic blood pressure. In addition, their skin conductance decreased 0.18 μS greater than when they experienced the non-biophilic setting. Short-term memory improved by 14%. Participants reported a decrease in negative emotions and an increase in positive emotions after experiencing the biophilic setting. Moreover, our findings indicate that participants experiencing biophilic environment virtually had similar physiological and cognitive responses as when experiencing the actual environment. This gives rise to the possibility of reducing stress and improving cognition by using virtual reality to provide exposures to natural elements in a variety of indoor settings where access to nature may not be possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Physiological and cognitive performance of exposure to biophilic indoor environment

Loading next page...
 
/lp/elsevier/physiological-and-cognitive-performance-of-exposure-to-biophilic-ZfewTFkk7d
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2018.01.006
Publisher site
See Article on Publisher Site

Abstract

Biophilic design, which incorporates natural elements into the built environment, has received increasing attention in both the design and health fields. But research quantifying physiological and cognitive benefits of indoor biophilic features is sparse. This randomized crossover study examines the physiological and cognitive responses to natural elements in an office building. Twenty-eight participants spent time in an indoor environment featuring biophilic design elements and one without, with the order of the visit randomized. In each visit, they experienced the environment for 5-min in reality and virtually by using virtual reality (VR). Wearable sensors were used to measure blood pressure, galvanic skin response and heart rate. Cognitive tests were administrated after each exposure. The indoor biophilic environment was associated with a decrease in participants' blood pressure. The overall differential effects for participants experiencing an indoor environment with biophilic elements versus none was 8.6 mmHg lower systolic and 3.6 mmHg lower diastolic blood pressure. In addition, their skin conductance decreased 0.18 μS greater than when they experienced the non-biophilic setting. Short-term memory improved by 14%. Participants reported a decrease in negative emotions and an increase in positive emotions after experiencing the biophilic setting. Moreover, our findings indicate that participants experiencing biophilic environment virtually had similar physiological and cognitive responses as when experiencing the actual environment. This gives rise to the possibility of reducing stress and improving cognition by using virtual reality to provide exposures to natural elements in a variety of indoor settings where access to nature may not be possible.

Journal

Building and EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off