Nanocomposites containing anatase nanoparticles were prepared by heterocoagulation, using Na-montmorillonite and titanium dioxide obtained by hydrothermal sol–gel method. Heterocoagulation was carried out at pH 1 and 4. Based on X-ray diffraction measurements, an average particle size of 3.8–4.0 nm was calculated by the Scherrer equation for the particles intercalated between the silicate lamellae. Nitrogen adsorption studies revealed that the specific surface area of nanocomposites prepared at pH 1 varies in the range of 157–284 m 2 /g, depending on the TiO 2 content. After preparation at pH 4, the specific surface area of the samples is lower (123–248 m 2 /g). UV–vis analyses of the nanocomposites showed that as TiO 2 content is increased, band gap energies relative to TiO 2 decrease and gradually approach the value obtained for the pure sol–gel TiO 2 sample ( E g = 3.12 eV). The nanocomposites obtained were tested in photocatalytic degradation of dichloroacetic acid (DCA) in a suspension photoreactor. The reaction was quantitatively monitored during the entire irradiation time using the pH-stat technique. We found that higher catalytic efficiencies could be achieved when increasing sample TiO 2 content. The photocatalytic efficiency of composites prepared at pH 1 was well below that of the samples prepared at pH 4, which was attributed to structural changes in the support brought about by the highly acidic medium. When photocatalytic degradation data were normalized to pure TiO 2 , composite samples containing 47% and 57% TiO 2 were found to be the most efficient as compared to the 100% TiO 2 sample prepared by the sol–gel method.
Applied Catalysis B: Environmental – Elsevier
Published: Oct 26, 2006
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
EndNote
Export to EndNoteAll DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue