Photoluminescence tuning and energy transfer process from Tb3+ to Eu3+ in GPTMS/TEOS–derived organic/silica hybrid films

Photoluminescence tuning and energy transfer process from Tb3+ to Eu3+ in GPTMS/TEOS–derived... In this work the photoluminescence study and energy transfer from Tb3+ to Eu3+–β–diketonate complexes incorporated into organic/Silica hybrid films derived from 3–glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) alkoxysilanes were investigated. Highly homogeneous and transparent films of Ln3+–doped GPTMS/TEOS–derived organic/silica hybrids were obtained from the organic/silica sols prepared by sol–gel. Tb3+:Eu3+–doped GPTMS/TEOS–derived films showed very intense luminescence when excited with UV light. Films co–doped with Tb3+ concentration fixed at 40.0×1018 ions/cm3 and Eu3+ concentrations of 0, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 1.5, and 2.0×1018 ions/cm3 were studied. The films presented characteristic transitions 5D4–7F6-3 of Tb3+ ions and 5D0–7F0–4 of Eu3+ ions measured on the visible spectrum region. Energy transfer from Terbium to Europium was studied through emission decay time measurements of 5D4–7F5 transition of Tb3+ (547 nm) which showed an accentuated decrease (from 1329 to 55 µs) due to the co–doping with Eu3+ ions concentrations varied from 0.03 to 1.5×1018 ions/cm3. Energy transfer rate (WET) of 17.4×103 s−1 and relative energy transfer efficiency (ηT) of 96% were observed for films samples co–doped with 40×1018 ions/cm3 of Tb3+ and 1.5×1018 ions/cm3 of Eu3+. Due to the variation in WET and ηT from Tb3+ to Eu3+, the intensity ratios of Tb3+ band at 547 nm (5D4–7F5) and Eu3+ band at 617 nm (5D0–7F2) vary remarkably making the co–doped film samples exhibit different luminescence colors varying from green to orange and red which can be tuned by the Tb3+/Eu3+ ratio incorporated into the samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Photoluminescence tuning and energy transfer process from Tb3+ to Eu3+ in GPTMS/TEOS–derived organic/silica hybrid films

Loading next page...
 
/lp/elsevier/photoluminescence-tuning-and-energy-transfer-process-from-tb3-to-eu3-e0zSHaWEj2
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2017.12.048
Publisher site
See Article on Publisher Site

Abstract

In this work the photoluminescence study and energy transfer from Tb3+ to Eu3+–β–diketonate complexes incorporated into organic/Silica hybrid films derived from 3–glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) alkoxysilanes were investigated. Highly homogeneous and transparent films of Ln3+–doped GPTMS/TEOS–derived organic/silica hybrids were obtained from the organic/silica sols prepared by sol–gel. Tb3+:Eu3+–doped GPTMS/TEOS–derived films showed very intense luminescence when excited with UV light. Films co–doped with Tb3+ concentration fixed at 40.0×1018 ions/cm3 and Eu3+ concentrations of 0, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 1.5, and 2.0×1018 ions/cm3 were studied. The films presented characteristic transitions 5D4–7F6-3 of Tb3+ ions and 5D0–7F0–4 of Eu3+ ions measured on the visible spectrum region. Energy transfer from Terbium to Europium was studied through emission decay time measurements of 5D4–7F5 transition of Tb3+ (547 nm) which showed an accentuated decrease (from 1329 to 55 µs) due to the co–doping with Eu3+ ions concentrations varied from 0.03 to 1.5×1018 ions/cm3. Energy transfer rate (WET) of 17.4×103 s−1 and relative energy transfer efficiency (ηT) of 96% were observed for films samples co–doped with 40×1018 ions/cm3 of Tb3+ and 1.5×1018 ions/cm3 of Eu3+. Due to the variation in WET and ηT from Tb3+ to Eu3+, the intensity ratios of Tb3+ band at 547 nm (5D4–7F5) and Eu3+ band at 617 nm (5D0–7F2) vary remarkably making the co–doped film samples exhibit different luminescence colors varying from green to orange and red which can be tuned by the Tb3+/Eu3+ ratio incorporated into the samples.

Journal

Journal of LuminescenceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off