Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review

Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review The photoluminescence (PL) properties of various Mn4+-activated fluoride phosphors are reviewed. The phosphors discussed are of I2−IV−F6:Mn4+ (I = alkali element; IV = tetravalent element), II−IV−F6:Mn4+ (II = divalent element), Ix−III−F3+x:Mn4+ (III = trivalent element), I3−IV−F7:Mn4+, Ix−V−F5+x:Mn4+ (V = pentavalent element), and II5−III−F13:Mn4+ types. The zero-phonon line (ZPL) emission and absorption transition energies of Mn4+ ions are determined from the experimental PL and PL excitation spectra by Franck−Condon analysis within the configurational-coordinate (CC) model. These energy values are used to obtain more reliable crystal-field (Dq) and Racah parameters (B and C) of the Mn4+ ions doped in various fluoride phosphors. Brik's new nephelauxetic parameter β1 is used to explain the relation of the ZPL emission energy [E(2Eg)ZPL] and crystal-field parameters to be written as E(2Eg)ZPL = 9.94 × 103β1 + 5.37 × 103cm−1. Temperature dependence of the PL intensity is also analyzed based on the CC model and found to be in excellent agreement with the experimental data when we take into consideration the acoustic-phonon contribution term in our originally developed model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review

Loading next page...
 
/lp/elsevier/photoluminescence-spectra-and-modeling-analyses-of-mn4-activated-wyWTUW3x7s
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2018.01.016
Publisher site
See Article on Publisher Site

Abstract

The photoluminescence (PL) properties of various Mn4+-activated fluoride phosphors are reviewed. The phosphors discussed are of I2−IV−F6:Mn4+ (I = alkali element; IV = tetravalent element), II−IV−F6:Mn4+ (II = divalent element), Ix−III−F3+x:Mn4+ (III = trivalent element), I3−IV−F7:Mn4+, Ix−V−F5+x:Mn4+ (V = pentavalent element), and II5−III−F13:Mn4+ types. The zero-phonon line (ZPL) emission and absorption transition energies of Mn4+ ions are determined from the experimental PL and PL excitation spectra by Franck−Condon analysis within the configurational-coordinate (CC) model. These energy values are used to obtain more reliable crystal-field (Dq) and Racah parameters (B and C) of the Mn4+ ions doped in various fluoride phosphors. Brik's new nephelauxetic parameter β1 is used to explain the relation of the ZPL emission energy [E(2Eg)ZPL] and crystal-field parameters to be written as E(2Eg)ZPL = 9.94 × 103β1 + 5.37 × 103cm−1. Temperature dependence of the PL intensity is also analyzed based on the CC model and found to be in excellent agreement with the experimental data when we take into consideration the acoustic-phonon contribution term in our originally developed model.

Journal

Journal of LuminescenceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off