Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review

Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review The photoluminescence (PL) properties of various Mn4+-activated fluoride phosphors are reviewed. The phosphors discussed are of I2−IV−F6:Mn4+ (I = alkali element; IV = tetravalent element), II−IV−F6:Mn4+ (II = divalent element), Ix−III−F3+x:Mn4+ (III = trivalent element), I3−IV−F7:Mn4+, Ix−V−F5+x:Mn4+ (V = pentavalent element), and II5−III−F13:Mn4+ types. The zero-phonon line (ZPL) emission and absorption transition energies of Mn4+ ions are determined from the experimental PL and PL excitation spectra by Franck−Condon analysis within the configurational-coordinate (CC) model. These energy values are used to obtain more reliable crystal-field (Dq) and Racah parameters (B and C) of the Mn4+ ions doped in various fluoride phosphors. Brik's new nephelauxetic parameter β1 is used to explain the relation of the ZPL emission energy [E(2Eg)ZPL] and crystal-field parameters to be written as E(2Eg)ZPL = 9.94 × 103β1 + 5.37 × 103cm−1. Temperature dependence of the PL intensity is also analyzed based on the CC model and found to be in excellent agreement with the experimental data when we take into consideration the acoustic-phonon contribution term in our originally developed model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors: A review

Loading next page...
 
/lp/elsevier/photoluminescence-spectra-and-modeling-analyses-of-mn4-activated-wyWTUW3x7s
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2018.01.016
Publisher site
See Article on Publisher Site

Abstract

The photoluminescence (PL) properties of various Mn4+-activated fluoride phosphors are reviewed. The phosphors discussed are of I2−IV−F6:Mn4+ (I = alkali element; IV = tetravalent element), II−IV−F6:Mn4+ (II = divalent element), Ix−III−F3+x:Mn4+ (III = trivalent element), I3−IV−F7:Mn4+, Ix−V−F5+x:Mn4+ (V = pentavalent element), and II5−III−F13:Mn4+ types. The zero-phonon line (ZPL) emission and absorption transition energies of Mn4+ ions are determined from the experimental PL and PL excitation spectra by Franck−Condon analysis within the configurational-coordinate (CC) model. These energy values are used to obtain more reliable crystal-field (Dq) and Racah parameters (B and C) of the Mn4+ ions doped in various fluoride phosphors. Brik's new nephelauxetic parameter β1 is used to explain the relation of the ZPL emission energy [E(2Eg)ZPL] and crystal-field parameters to be written as E(2Eg)ZPL = 9.94 × 103β1 + 5.37 × 103cm−1. Temperature dependence of the PL intensity is also analyzed based on the CC model and found to be in excellent agreement with the experimental data when we take into consideration the acoustic-phonon contribution term in our originally developed model.

Journal

Journal of LuminescenceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off