Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes

Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate... The widespread occurrence of pharmaceuticals and their metabolites in natural waters has raised great concerns about their potential risks on human health and ecological systems. This study systematically investigates the degradation of sulfasalazine (SSZ) and its two human metabolites, sulfapyridine (SPD) and 5-aminosalicylic acid (5-ASA), by UV and UV/peroxydisulfate (UV/PDS) processes. Experimental results show that SPD and 5-ASA were readily degraded upon UV 254 nm direct photolysis, with quantum yields measured to be (8.6 ± 0.8) × 10−3 and (2.4 ± 0.1) × 10−2 mol Einstein−1, respectively. Although SSZ was resistant to direct UV photolysis, it could be effectively removed by both UV/H2O2 and UV/PDS processes, with fluence-based pseudo-first-order rate constants determined to be 0.0030 and 0.0038 cm2 mJ−1, respectively. Second-order rate constant between SO4•− and SSZ was measured as (1.33 ± 0.01) × 109 M−1s−1 by competition kinetic method. A kinetic model was established for predicting the degradation rate of SSZ in the UV/PDS process. Increasing the dosage of PDS significantly enhanced the degradation of SSZ in the UV/PDS process, which can be well predicted by the developed kinetic model. Natural water constituents, such as natural organic matter (NOM) and bicarbonate (HCO3−), influenced the degradation of SSZ differently. The azo functional group of SSZ molecule was predicted as the reactive site susceptible to electrophilic attack by SO4•− by frontier electron densities (FEDs) calculations. Four intermediate products arising from azo bond cleavage and SO2 extrusion were identified by solid phase extraction-liquid chromatography-triple quadrupole mass spectrometry (SPE-LC-MS/MS). Based on the products identified, detailed transformation pathways for SSZ degradation in the UV/PDS system were proposed. Results reveal that UV/PDS could be an efficient approach for remediation of water contaminated by SSZ and its metabolites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes

Loading next page...
 
/lp/elsevier/photodegradation-of-sulfasalazine-and-its-human-metabolites-in-water-fzDQltfp9a
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.01.047
Publisher site
See Article on Publisher Site

Abstract

The widespread occurrence of pharmaceuticals and their metabolites in natural waters has raised great concerns about their potential risks on human health and ecological systems. This study systematically investigates the degradation of sulfasalazine (SSZ) and its two human metabolites, sulfapyridine (SPD) and 5-aminosalicylic acid (5-ASA), by UV and UV/peroxydisulfate (UV/PDS) processes. Experimental results show that SPD and 5-ASA were readily degraded upon UV 254 nm direct photolysis, with quantum yields measured to be (8.6 ± 0.8) × 10−3 and (2.4 ± 0.1) × 10−2 mol Einstein−1, respectively. Although SSZ was resistant to direct UV photolysis, it could be effectively removed by both UV/H2O2 and UV/PDS processes, with fluence-based pseudo-first-order rate constants determined to be 0.0030 and 0.0038 cm2 mJ−1, respectively. Second-order rate constant between SO4•− and SSZ was measured as (1.33 ± 0.01) × 109 M−1s−1 by competition kinetic method. A kinetic model was established for predicting the degradation rate of SSZ in the UV/PDS process. Increasing the dosage of PDS significantly enhanced the degradation of SSZ in the UV/PDS process, which can be well predicted by the developed kinetic model. Natural water constituents, such as natural organic matter (NOM) and bicarbonate (HCO3−), influenced the degradation of SSZ differently. The azo functional group of SSZ molecule was predicted as the reactive site susceptible to electrophilic attack by SO4•− by frontier electron densities (FEDs) calculations. Four intermediate products arising from azo bond cleavage and SO2 extrusion were identified by solid phase extraction-liquid chromatography-triple quadrupole mass spectrometry (SPE-LC-MS/MS). Based on the products identified, detailed transformation pathways for SSZ degradation in the UV/PDS system were proposed. Results reveal that UV/PDS could be an efficient approach for remediation of water contaminated by SSZ and its metabolites.

Journal

Water ResearchElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off