Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application

Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica... MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni2O3). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV–vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni2O3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni2O3, respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni2O3 as a single component. The adsorption mechanism of MCM-48/Ni2O3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni2O3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application

Loading next page...
 
/lp/elsevier/photocatalytic-removal-of-congo-red-dye-using-mcm-48-ni2o3-composite-iYNXF3QeIk
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2017.08.048
Publisher site
See Article on Publisher Site

Abstract

MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni2O3). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV–vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni2O3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni2O3, respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni2O3 as a single component. The adsorption mechanism of MCM-48/Ni2O3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni2O3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules.

Journal

Journal of Environmental ManagementElsevier

Published: Dec 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off