Photobioreactor design for microalgae production through computational fluid dynamics: A review

Photobioreactor design for microalgae production through computational fluid dynamics: A review Microalgae are seen as the most promising flexible feedstock, being considered the crop of the future. They grow fast, just needing sunlight, carbon dioxide and minerals. They contain high value ingredients, such as proteins, carbohydrates, lipids, nucleic acids and others (carotenoids and polymers). Thus, they can be produced for a wide range of markets, including human and animal nutrition, cosmetics, pharmaceuticals and biofuels. However, the production cost is still high, limiting their commercial applications to high-valued compounds. The reduction of these costs can be obtained with efficient bioreactor designs, which are able to achieve high areal biomass productivities. In this context, Computational Fluid Dynamics (CFD) may play an important role in the optimization of bioreactor design, analysing the interaction of hydrodynamics, light supply, heat and mass transfer and biological kinetics. This study addresses the recent advances in CFD modelling of both open pond and closed bioreactors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Photobioreactor design for microalgae production through computational fluid dynamics: A review

Loading next page...
 
/lp/elsevier/photobioreactor-design-for-microalgae-production-through-computational-nzoRbbrUPz
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.064
Publisher site
See Article on Publisher Site

Abstract

Microalgae are seen as the most promising flexible feedstock, being considered the crop of the future. They grow fast, just needing sunlight, carbon dioxide and minerals. They contain high value ingredients, such as proteins, carbohydrates, lipids, nucleic acids and others (carotenoids and polymers). Thus, they can be produced for a wide range of markets, including human and animal nutrition, cosmetics, pharmaceuticals and biofuels. However, the production cost is still high, limiting their commercial applications to high-valued compounds. The reduction of these costs can be obtained with efficient bioreactor designs, which are able to achieve high areal biomass productivities. In this context, Computational Fluid Dynamics (CFD) may play an important role in the optimization of bioreactor design, analysing the interaction of hydrodynamics, light supply, heat and mass transfer and biological kinetics. This study addresses the recent advances in CFD modelling of both open pond and closed bioreactors.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off