Phosphorus removal by in situ generated Fe(II): Efficacy, kinetics and mechanism

Phosphorus removal by in situ generated Fe(II): Efficacy, kinetics and mechanism The application of in situ electrochemical generation of ferrous (Fe(II)) ions for phosphorus (P) removal in wastewater treatment was investigated with attention to the efficacy, kinetics and mechanism. At concentrations typical of municipal wastewater, P could be removed by in situ Fe(II) with removal efficiency higher than achieved on addition of FeSO4 and close to that of FeCl3 under both anoxic and oxic conditions. The generation of alkalinity due to water electrolysis at the cathode created much higher pH conditions compared to FeSO4 dosing thereby resulting in very different pathways of Fe solid phase formation and associated P removal mechanisms. The remarkably similar dependence of P removal on accumulated Fe for all investigated currents, initial P concentrations and DO conditions indicated that kinetic aspects did not play a role in P removal during in situ Fe(II) dosing. Thermodynamic modelling was undertaken to investigate possible solid phase formation pathways under anoxic conditions and these insights were extended to oxic conditions. The exclusive formation of ferrous hydroxide during anoxic in situ Fe(II) dosing implied that P removal occurred via coprecipitation and adsorption. Under oxic conditions, the high pH conditions would have resulted in rapid Fe(II) oxidation and formation of ferric oxyhydroxides with associated coprecipitation and adsorption effecting P removal in a similar pattern to that observed under anoxic conditions. In situ Fe(II) dosing represents a versatile option for chemical P removal with the precise control of Fe dosage to optimize FeP forms for possible P recovery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Phosphorus removal by in situ generated Fe(II): Efficacy, kinetics and mechanism

Loading next page...
 
/lp/elsevier/phosphorus-removal-by-in-situ-generated-fe-ii-efficacy-kinetics-and-LKVb3jhun1
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.049
Publisher site
See Article on Publisher Site

Abstract

The application of in situ electrochemical generation of ferrous (Fe(II)) ions for phosphorus (P) removal in wastewater treatment was investigated with attention to the efficacy, kinetics and mechanism. At concentrations typical of municipal wastewater, P could be removed by in situ Fe(II) with removal efficiency higher than achieved on addition of FeSO4 and close to that of FeCl3 under both anoxic and oxic conditions. The generation of alkalinity due to water electrolysis at the cathode created much higher pH conditions compared to FeSO4 dosing thereby resulting in very different pathways of Fe solid phase formation and associated P removal mechanisms. The remarkably similar dependence of P removal on accumulated Fe for all investigated currents, initial P concentrations and DO conditions indicated that kinetic aspects did not play a role in P removal during in situ Fe(II) dosing. Thermodynamic modelling was undertaken to investigate possible solid phase formation pathways under anoxic conditions and these insights were extended to oxic conditions. The exclusive formation of ferrous hydroxide during anoxic in situ Fe(II) dosing implied that P removal occurred via coprecipitation and adsorption. Under oxic conditions, the high pH conditions would have resulted in rapid Fe(II) oxidation and formation of ferric oxyhydroxides with associated coprecipitation and adsorption effecting P removal in a similar pattern to that observed under anoxic conditions. In situ Fe(II) dosing represents a versatile option for chemical P removal with the precise control of Fe dosage to optimize FeP forms for possible P recovery.

Journal

Water ResearchElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off