Phosphorescent detection of DNA- drug interaction based on emission quenching of ZnS quantum dots via photoinduced electron transfer

Phosphorescent detection of DNA- drug interaction based on emission quenching of ZnS quantum dots... A novel room temperature phosphorescence (RTP) sensor consisting of quantum dots (QDs)-drug nanohybrid was used for the investigation of interaction between epirubicin (EPI) and double-stranded deoxyribonucleic acid (ds-DNA). The method based on the quenching effect of EPI on the phosphorescence emission of Mn-doped ZnS QDs via photoinduced electron-transfer (PIET) mechanism. Adsorption of EPI to the QDs surface caused quenching of RTP emission of QDs via photoinduced electron-transfer process. Whereas, with the addition of DNA provided the restoration of emission due to removing of EPI from the surface. The quantum dots were synthesized in an aqueous medium and characterized. The diameter of prepared QDs were about 3.5 nm, spherical, and uniform size. The quenching mechanism of QDs by EPI is not only collisional but also static. The static and dynamic quenching constants were found as 5.36 × 105 M−1 and 3.19 × 104 M−1, respectively. In addition to this method, fluorescence and absorption spectrometric methods were used to evaluate DNA/drug interaction and calculate the binding constant (K), which was 3.83 × 105 M−1. Proposed method has advantages such as simplicity and avoids interferences from autofluorescence and scattering light. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Phosphorescent detection of DNA- drug interaction based on emission quenching of ZnS quantum dots via photoinduced electron transfer

Loading next page...
 
/lp/elsevier/phosphorescent-detection-of-dna-drug-interaction-based-on-emission-PP9X9OLvr8
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2018.01.026
Publisher site
See Article on Publisher Site

Abstract

A novel room temperature phosphorescence (RTP) sensor consisting of quantum dots (QDs)-drug nanohybrid was used for the investigation of interaction between epirubicin (EPI) and double-stranded deoxyribonucleic acid (ds-DNA). The method based on the quenching effect of EPI on the phosphorescence emission of Mn-doped ZnS QDs via photoinduced electron-transfer (PIET) mechanism. Adsorption of EPI to the QDs surface caused quenching of RTP emission of QDs via photoinduced electron-transfer process. Whereas, with the addition of DNA provided the restoration of emission due to removing of EPI from the surface. The quantum dots were synthesized in an aqueous medium and characterized. The diameter of prepared QDs were about 3.5 nm, spherical, and uniform size. The quenching mechanism of QDs by EPI is not only collisional but also static. The static and dynamic quenching constants were found as 5.36 × 105 M−1 and 3.19 × 104 M−1, respectively. In addition to this method, fluorescence and absorption spectrometric methods were used to evaluate DNA/drug interaction and calculate the binding constant (K), which was 3.83 × 105 M−1. Proposed method has advantages such as simplicity and avoids interferences from autofluorescence and scattering light.

Journal

Journal of LuminescenceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off