Phospholipids in chocolate: Structural insights and mechanistic explanations of rheological behavior by coarse-grained molecular dynamics simulations

Phospholipids in chocolate: Structural insights and mechanistic explanations of rheological... The structural properties of phospholipid layers and micelles at sucrose crystal cocoa butter interfaces were investigated by coarse-grained molecular dynamics simulations to understand the molecular mechanisms and structures vital for the chocolate conching process. Influences of the different hydrophilic head groups phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid of lecithin phospholipids as well as influences of the degree of saturation of aliphatic chains were investigated. Phospholipid monolayers at sucrose–cocoa butter interfaces were shown to have similar molar composition as soy lecithin, indicating that all phospholipids adsorb with similar probability. Phospholipids with saturated aliphatic chains have smaller areas per lipid in the monolayer on the sucrose cocoa butter interface than unsaturated phospholipids. It was shown that phospholipids that are not adsorbed in the monolayer assemble in spherical, cylindrical, and wormlike micelles in cocoa butter, depending on the phospholipid concentration. Wormlike micelles were shown to be able to build a hydrophilic network in the cocoa butter medium. This is proposed as an explanation for the increasing yield values at higher lecithin concentrations in chocolate manufacturing which have been reported in several studies. The resulting structures of phospholipids on sucrose surfaces were related to experimental measurements from the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Phospholipids in chocolate: Structural insights and mechanistic explanations of rheological behavior by coarse-grained molecular dynamics simulations

Loading next page...
 
/lp/elsevier/phospholipids-in-chocolate-structural-insights-and-mechanistic-Wt28XhuWIQ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2018.02.014
Publisher site
See Article on Publisher Site

Abstract

The structural properties of phospholipid layers and micelles at sucrose crystal cocoa butter interfaces were investigated by coarse-grained molecular dynamics simulations to understand the molecular mechanisms and structures vital for the chocolate conching process. Influences of the different hydrophilic head groups phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid of lecithin phospholipids as well as influences of the degree of saturation of aliphatic chains were investigated. Phospholipid monolayers at sucrose–cocoa butter interfaces were shown to have similar molar composition as soy lecithin, indicating that all phospholipids adsorb with similar probability. Phospholipids with saturated aliphatic chains have smaller areas per lipid in the monolayer on the sucrose cocoa butter interface than unsaturated phospholipids. It was shown that phospholipids that are not adsorbed in the monolayer assemble in spherical, cylindrical, and wormlike micelles in cocoa butter, depending on the phospholipid concentration. Wormlike micelles were shown to be able to build a hydrophilic network in the cocoa butter medium. This is proposed as an explanation for the increasing yield values at higher lecithin concentrations in chocolate manufacturing which have been reported in several studies. The resulting structures of phospholipids on sucrose surfaces were related to experimental measurements from the literature.

Journal

Journal of Food EngineeringElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off