Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane

Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like... Phenol recovery from phenol-laden saline wastewater plays an important role in the waste reclamation and pollution control. A membrane aromatic recovery system-like membrane contactor (MARS-like membrane contactor) was set up in this study using electrospun polydimethylsiloxane/polymethyl methacrylate (PDMS/PMMA) membrane with 0.0048 m2 effective area to separate phenol from saline wastewater. Phenol and water contact angles of 0° and 162° were achieved on this membrane surface simultaneously, indicating its potential in the separation of phenol and water-soluble salt. Feed solution (500 mL) of 0.90 L/h and receiving solution (500 mL) of 1.26 L/h were investigated to be the optimum conditions for phenol separation, which corresponds to the employed Reynolds number of 14.6 and 20.5. During 108-h continuous separation for feed solution (2.0 g/L phenol, 10.0 g/L NaCl) under room temperature (20 °C), 42.6% of phenol was recycled in receiving solution with a salt rejection of 99.95%. Meanwhile, the mean phenol mass transfer coefficient (Kov) was 6.7 × 10−7 m s−1. As a membrane-based process, though the permeated phenol increased with the increase of phenol concentration in feed solution, the phenol recovery ratio was determined by the membrane properties rather than the pollutant concentrations. Phenol was found to permeate this membrane via adsorption, diffusion and desorption, and therefore, the membrane fouling generated from pore blockage in other membrane separation processes was totally avoided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane

Loading next page...
 
/lp/elsevier/phenol-separation-from-phenol-laden-saline-wastewater-by-membrane-7qNqy4yew4
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.011
Publisher site
See Article on Publisher Site

Abstract

Phenol recovery from phenol-laden saline wastewater plays an important role in the waste reclamation and pollution control. A membrane aromatic recovery system-like membrane contactor (MARS-like membrane contactor) was set up in this study using electrospun polydimethylsiloxane/polymethyl methacrylate (PDMS/PMMA) membrane with 0.0048 m2 effective area to separate phenol from saline wastewater. Phenol and water contact angles of 0° and 162° were achieved on this membrane surface simultaneously, indicating its potential in the separation of phenol and water-soluble salt. Feed solution (500 mL) of 0.90 L/h and receiving solution (500 mL) of 1.26 L/h were investigated to be the optimum conditions for phenol separation, which corresponds to the employed Reynolds number of 14.6 and 20.5. During 108-h continuous separation for feed solution (2.0 g/L phenol, 10.0 g/L NaCl) under room temperature (20 °C), 42.6% of phenol was recycled in receiving solution with a salt rejection of 99.95%. Meanwhile, the mean phenol mass transfer coefficient (Kov) was 6.7 × 10−7 m s−1. As a membrane-based process, though the permeated phenol increased with the increase of phenol concentration in feed solution, the phenol recovery ratio was determined by the membrane properties rather than the pollutant concentrations. Phenol was found to permeate this membrane via adsorption, diffusion and desorption, and therefore, the membrane fouling generated from pore blockage in other membrane separation processes was totally avoided.

Journal

Water ResearchElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off