Phase-field slip-line theory of plasticity

Phase-field slip-line theory of plasticity A variational approach to determine the deformation of an ideally plastic substance is proposed by solving a sequence of energy minimization problems under proper conditions to account for the irreversible character of plasticity. The flow is driven by the local transformation of elastic strain energy into plastic work on slip surfaces, once that a certain energetic barrier for slip activation has been overcome. The distinction of the elastic strain energy into spherical and deviatoric parts is used to incorporate in the model the idea of von Mises plasticity and isochoric plastic strain. This is a “phase field model” because the matching condition at the slip interfaces is substituted by the evolution of an auxiliary phase field that, similar to a damage field, is unitary on the elastic phase and null on the yielded phase. The slip lines diffuse in bands, whose width depends upon a material length-scale parameter.Numerical experiments on representative problems in plane strain give solutions with noteworthy similarities with the results from classical slip-line field theory, but the proposed model is much richer because, accounting for elastic deformations, it can describe the formation of slip bands at the local level, which can nucleate, propagate, widen and diffuse by varying the boundary conditions. In particular, the solution for a long pipe under internal pressure is very different from the one obtainable from the classical macroscopic theory of plasticity. For this case, the location of the plastic bands may be an insight to explain the premature failures that are sometimes encountered during the manufacturing process. This practical example enhances the importance of this new theory based on the mathematical sciences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanics and Physics of Solids Elsevier

Loading next page...
 
/lp/elsevier/phase-field-slip-line-theory-of-plasticity-EA36n4xOti
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0022-5096
eISSN
1873-4782
D.O.I.
10.1016/j.jmps.2016.04.024
Publisher site
See Article on Publisher Site

Abstract

A variational approach to determine the deformation of an ideally plastic substance is proposed by solving a sequence of energy minimization problems under proper conditions to account for the irreversible character of plasticity. The flow is driven by the local transformation of elastic strain energy into plastic work on slip surfaces, once that a certain energetic barrier for slip activation has been overcome. The distinction of the elastic strain energy into spherical and deviatoric parts is used to incorporate in the model the idea of von Mises plasticity and isochoric plastic strain. This is a “phase field model” because the matching condition at the slip interfaces is substituted by the evolution of an auxiliary phase field that, similar to a damage field, is unitary on the elastic phase and null on the yielded phase. The slip lines diffuse in bands, whose width depends upon a material length-scale parameter.Numerical experiments on representative problems in plane strain give solutions with noteworthy similarities with the results from classical slip-line field theory, but the proposed model is much richer because, accounting for elastic deformations, it can describe the formation of slip bands at the local level, which can nucleate, propagate, widen and diffuse by varying the boundary conditions. In particular, the solution for a long pipe under internal pressure is very different from the one obtainable from the classical macroscopic theory of plasticity. For this case, the location of the plastic bands may be an insight to explain the premature failures that are sometimes encountered during the manufacturing process. This practical example enhances the importance of this new theory based on the mathematical sciences.

Journal

Journal of the Mechanics and Physics of SolidsElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off