Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations

Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode... A phase field model is developed to study the effect of charging methods on the stress evolution in an arbitrarily-shaped elastoplastic electrode particle. The model integrates Cahn-Hilliard equation with smoothed boundary method for two-phase lithiation under galvanostatic and potentiostatic operations and phase field microelasticity theory for inhomogeneous lithiation-mediated elasticity and plasticity. During two-phase lithiation, we show that the lithiation rate approximately remains constant under galvanostatic operation but slows down as lithiation proceeds under potentiostatic operation. While, the evolution of surface tangential stress during two-phase lithiation is similar under both galvanostatic and potentiostatic operations. Our results show that the surface tangential stress monotonously varies with the Li-rich phase volume, changing from compression to tension. The larger current density, as well as the larger chemical potential on the electrode particle surface, leads to the larger surface tangential compression in the early stage of lithiation but the larger surface tangential tension in the late stage. Our model is capable of probing the connection among the operating conditions, the complex particle geometry and the lithiation-induced stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Solids and Structures Elsevier

Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations

Loading next page...
 
/lp/elsevier/phase-field-model-for-two-phase-lithiation-in-an-arbitrarily-shaped-08LzkjDhio
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0020-7683
eISSN
1879-2146
D.O.I.
10.1016/j.ijsolstr.2018.02.033
Publisher site
See Article on Publisher Site

Abstract

A phase field model is developed to study the effect of charging methods on the stress evolution in an arbitrarily-shaped elastoplastic electrode particle. The model integrates Cahn-Hilliard equation with smoothed boundary method for two-phase lithiation under galvanostatic and potentiostatic operations and phase field microelasticity theory for inhomogeneous lithiation-mediated elasticity and plasticity. During two-phase lithiation, we show that the lithiation rate approximately remains constant under galvanostatic operation but slows down as lithiation proceeds under potentiostatic operation. While, the evolution of surface tangential stress during two-phase lithiation is similar under both galvanostatic and potentiostatic operations. Our results show that the surface tangential stress monotonously varies with the Li-rich phase volume, changing from compression to tension. The larger current density, as well as the larger chemical potential on the electrode particle surface, leads to the larger surface tangential compression in the early stage of lithiation but the larger surface tangential tension in the late stage. Our model is capable of probing the connection among the operating conditions, the complex particle geometry and the lithiation-induced stress.

Journal

International Journal of Solids and StructuresElsevier

Published: Jun 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off