Phase change materials and carbon nanostructures for thermal energy storage: A literature review

Phase change materials and carbon nanostructures for thermal energy storage: A literature review The high thermal conductivity of carbon based nanostructures (CNs) has been recognized appropriate to be integrated into phase change materials (PCMs) to enhance the overall thermal properties of the obtained nanocomposites. The equilibrium of the possibility to enhance the thermal conductivity of the PCMs and the latent heat capcity are the key for their ability to store or dissipate a large amount of energy in a short period of time. This paper gives an update overview summarizing the state-of-the-art concerning nanocomposites prepared using PCMs and CNs with emphasis on the improvement of the latent heat capacity and of the thermal conductivity. Focus is directed towards experimental research studies regarding the enhancement of the thermal properties (thermal conductivity and the latent heat capacity) of PCMs obtained by the addition of the CNs by means of the encapsulation method.The majority of the reported research studies focus mainly on the thermal characterization of PCMs nanocomposites, however there is scarce information about the mechanisms explaining why/how the thermal properties are enhanced. This review outlines the results of the thermal conductivity and the latent heat capacity of PCMs/CNs nanocomposites, trying to identify the features that lead to the improvement of their thermal properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Phase change materials and carbon nanostructures for thermal energy storage: A literature review

Loading next page...
 
/lp/elsevier/phase-change-materials-and-carbon-nanostructures-for-thermal-energy-Ep6IBC8kjm
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.093
Publisher site
See Article on Publisher Site

Abstract

The high thermal conductivity of carbon based nanostructures (CNs) has been recognized appropriate to be integrated into phase change materials (PCMs) to enhance the overall thermal properties of the obtained nanocomposites. The equilibrium of the possibility to enhance the thermal conductivity of the PCMs and the latent heat capcity are the key for their ability to store or dissipate a large amount of energy in a short period of time. This paper gives an update overview summarizing the state-of-the-art concerning nanocomposites prepared using PCMs and CNs with emphasis on the improvement of the latent heat capacity and of the thermal conductivity. Focus is directed towards experimental research studies regarding the enhancement of the thermal properties (thermal conductivity and the latent heat capacity) of PCMs obtained by the addition of the CNs by means of the encapsulation method.The majority of the reported research studies focus mainly on the thermal characterization of PCMs nanocomposites, however there is scarce information about the mechanisms explaining why/how the thermal properties are enhanced. This review outlines the results of the thermal conductivity and the latent heat capacity of PCMs/CNs nanocomposites, trying to identify the features that lead to the improvement of their thermal properties.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off