Pharmacological reduction of electrophysiological diaschisis after photothrombotic ischemia in rat neocortex

Pharmacological reduction of electrophysiological diaschisis after photothrombotic ischemia in... Focal cerebral lesions in the rat brain induced by photothrombosis cause hyperexcitability of the surrounding brain. This can be demonstrated in brain slices taken from animals several days after lesioning, by analysis of field potential responses to paired-pulse stimulation. We now investigated whether and how these remote effects of a cortical lesion can be modified pharmacologically. Application of the NMDA receptor antagonist, MK-801 ((+)-5-methyl-10,11-dihydro-5 H -dibnzo( a , d )cyclohepten-5,10-imine), was shown to block induction of immediate early genes and activation of astrocytes as evidenced by glial fibrillary acidic protein (GFAP) staining in the photothrombosis model. However, MK-801 did not affect the hyperexcitability that had been demonstrated by field potential recordings in brain slices. In another series of experiments, lubeluzole ((+)-( S )-4-(2-benzothiazolylmethylamino)-α-((3,4-difluorophenoxy)methyl)-1-piperidineethanol), which inhibits the glutamate-activated nitric oxide pathway as evidenced by down-regulation of intracellular cyclic GMP, was given immediately after induction of the insult. This reduced hyperexcitability as investigated 7 days later. In the light of these data one can suggest that a nitric oxide-cyclic GMP-related mechanism may be responsible for functional alterations in the surround of photothrombotic brain lesions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Pharmacology Elsevier

Pharmacological reduction of electrophysiological diaschisis after photothrombotic ischemia in rat neocortex

Loading next page...
 
/lp/elsevier/pharmacological-reduction-of-electrophysiological-diaschisis-after-aCtjd0YzJc
Publisher
Elsevier
Copyright
Copyright © 1997 Elsevier Science B.V.
ISSN
0014-2999
D.O.I.
10.1016/S0014-2999(96)00891-6
Publisher site
See Article on Publisher Site

Abstract

Focal cerebral lesions in the rat brain induced by photothrombosis cause hyperexcitability of the surrounding brain. This can be demonstrated in brain slices taken from animals several days after lesioning, by analysis of field potential responses to paired-pulse stimulation. We now investigated whether and how these remote effects of a cortical lesion can be modified pharmacologically. Application of the NMDA receptor antagonist, MK-801 ((+)-5-methyl-10,11-dihydro-5 H -dibnzo( a , d )cyclohepten-5,10-imine), was shown to block induction of immediate early genes and activation of astrocytes as evidenced by glial fibrillary acidic protein (GFAP) staining in the photothrombosis model. However, MK-801 did not affect the hyperexcitability that had been demonstrated by field potential recordings in brain slices. In another series of experiments, lubeluzole ((+)-( S )-4-(2-benzothiazolylmethylamino)-α-((3,4-difluorophenoxy)methyl)-1-piperidineethanol), which inhibits the glutamate-activated nitric oxide pathway as evidenced by down-regulation of intracellular cyclic GMP, was given immediately after induction of the insult. This reduced hyperexcitability as investigated 7 days later. In the light of these data one can suggest that a nitric oxide-cyclic GMP-related mechanism may be responsible for functional alterations in the surround of photothrombotic brain lesions.

Journal

European Journal of PharmacologyElsevier

Published: Feb 12, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off