Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control

Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental... A personal comfort model is a new approach to thermal comfort modeling that predicts an individual's thermal comfort response, instead of the average response of a large population. It leverages the Internet of Things and machine learning to learn individuals' comfort requirements directly from the data collected in their everyday environment. Its results could be aggregated to predict comfort of a population. To provide guidance on future efforts in this emerging research area, this paper presents a unified framework for personal comfort models. We first define the problem by providing a brief discussion of existing thermal comfort models and their limitations for real-world applications, and then review the current state of research on personal comfort models including a summary of key advances and gaps. We then describe a modeling framework to establish fundamental concepts and methodologies for developing and evaluating personal comfort models, followed by a discussion of how such models can be integrated into indoor environmental controls. Lastly, we discuss the challenges and opportunities for applications of personal comfort models for building design, control, standards, and future research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control

Loading next page...
 
/lp/elsevier/personal-comfort-models-a-new-paradigm-in-thermal-comfort-for-occupant-Fh6G75mZRg
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2018.01.023
Publisher site
See Article on Publisher Site

Abstract

A personal comfort model is a new approach to thermal comfort modeling that predicts an individual's thermal comfort response, instead of the average response of a large population. It leverages the Internet of Things and machine learning to learn individuals' comfort requirements directly from the data collected in their everyday environment. Its results could be aggregated to predict comfort of a population. To provide guidance on future efforts in this emerging research area, this paper presents a unified framework for personal comfort models. We first define the problem by providing a brief discussion of existing thermal comfort models and their limitations for real-world applications, and then review the current state of research on personal comfort models including a summary of key advances and gaps. We then describe a modeling framework to establish fundamental concepts and methodologies for developing and evaluating personal comfort models, followed by a discussion of how such models can be integrated into indoor environmental controls. Lastly, we discuss the challenges and opportunities for applications of personal comfort models for building design, control, standards, and future research.

Journal

Building and EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off