Performance of high lignin content cellulose nanocrystals in poly(lactic acid)

Performance of high lignin content cellulose nanocrystals in poly(lactic acid) High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Performance of high lignin content cellulose nanocrystals in poly(lactic acid)

Loading next page...
 
/lp/elsevier/performance-of-high-lignin-content-cellulose-nanocrystals-in-poly-qjPIDeSDyH
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2017.12.039
Publisher site
See Article on Publisher Site

Abstract

High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger surface area, lower degree of agglomeration, and more hydrophobic surfaces compared to BLCNCs, as characterized by electron microscopy, surface area measurements, thermal analysis, spectroscopy and water contact angle measurements. The effect of lignin and CNC morphology on the mechanical, thermal and viscoelastic properties and CNCs/polymer interfacial adhesion of nanocomposites was investigated with tensile test, DSC and DMA. Compared to neat PLA, the Young's modulus, elongation to break, and toughness of PLA/2%HLCNCs were improved by 14, 77, and 30%, respectively. HLCNCs and BLCNCs act as nucleating fillers, increasing the degree of crystallinity (χc) of PLA in nanocomposites. The presence of lignin nanoparticles in the HLCNC increased the compatibility/adhesion between CNCs and polymer matrix which increased the storage modulus.

Journal

PolymerElsevier

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off