Performance evaluation for three pollution detection methods using data from a real contamination accident

Performance evaluation for three pollution detection methods using data from a real contamination... Early warning systems have been widely deployed to safeguard water security. Many contamination detection methods have been developed and evaluated in the past decades. Although encouraging detection performance has been obtained and reported, these evaluations mainly used artificial or laboratory data. The evaluation of detection performance with data from real contamination accidents has rarely been conducted. Implementation of contamination event methods without full assessment using field data might lead to failure of an early warning system. In this paper, the detection performance of three contamination detection methods, a Pearson correlation Euclidean distance (PE) based detection method, a multivariate Euclidean distance (MED) method and a linear prediction filter (LPF) method, was evaluated using data from a real contamination accident. Results improve understanding of the implementation of detection methods to field situations and show that all methods are prone to yielding worse detection performance when applied to data from a real contamination accident. They also revealed that the Pearson correlation Euclidean distance based method is more capable of differentiating between equipment noise and presence of contamination and has greater potential to be used in real field situations than the MED and LPF methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Performance evaluation for three pollution detection methods using data from a real contamination accident

Loading next page...
 
/lp/elsevier/performance-evaluation-for-three-pollution-detection-methods-using-iSay4oG0gw
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2015.07.026
Publisher site
See Article on Publisher Site

Abstract

Early warning systems have been widely deployed to safeguard water security. Many contamination detection methods have been developed and evaluated in the past decades. Although encouraging detection performance has been obtained and reported, these evaluations mainly used artificial or laboratory data. The evaluation of detection performance with data from real contamination accidents has rarely been conducted. Implementation of contamination event methods without full assessment using field data might lead to failure of an early warning system. In this paper, the detection performance of three contamination detection methods, a Pearson correlation Euclidean distance (PE) based detection method, a multivariate Euclidean distance (MED) method and a linear prediction filter (LPF) method, was evaluated using data from a real contamination accident. Results improve understanding of the implementation of detection methods to field situations and show that all methods are prone to yielding worse detection performance when applied to data from a real contamination accident. They also revealed that the Pearson correlation Euclidean distance based method is more capable of differentiating between equipment noise and presence of contamination and has greater potential to be used in real field situations than the MED and LPF methods.

Journal

Journal of Environmental ManagementElsevier

Published: Sep 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off