Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates

Performance enhancement and environmental impact of cement composites containing graphene oxide... The rapidly growing volume of construction and demolition (C&D) waste produced by construction industry has led tremendous pressure on environmental protection. This study focuses on the improvement of the use of C&D waste as recycled fine aggregates (RFA) in cement composites by adding graphene oxide (GO), which is desirable to promote the application of recycled aggregates, decrease the exploitation of natural aggregates (NA) and alleviate environmental burden. In order to investigate the performance enhancement of RFA cement composites, the physico-chemical properties, microstructural performances, and environmental benefits of RFA mortars prepared with different GO contents (0.05 wt%, 0.1 wt%, and 0.2 wt%) have systematically examined. Electrochemical and mercury intrusive analysis revealed that the RFA mortars containing GO exhibited lower porosity and denser pore structure, compared to RFA mortars without any GO. The incorporated GO could further reduce ionic conductivity and thus improve the service life of RFA mortars. In addition, the interfacial transition zone (ITZ) between the RFA and cement paste was filled with hydration products when examined by scanning electron microscopy (SEM). Compared to those of RFA mortars without GO, the 28-day compressive and flexural strengths of RFA mortars with 0.2 wt% GO were increased by 19.2% and 47.5%, respectively. Finally, life cycle assessment (LCA) indicated that, compared to mortars with NA at the equivalent mechanical strengths, RFA mortars (containing 0.2 wt% GO) have better environmental performance (6.7% CO2 emission reduction or 2.2% primary energy demand saving). Overall, the addition of GO could significantly improve the quality of RFA mortars, which could further apparently improve the recycling of C&D waste, and then promote the sustainable development of construction sector. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates

Loading next page...
 
/lp/elsevier/performance-enhancement-and-environmental-impact-of-cement-composites-L9Nsd0e0nr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.05.108
Publisher site
See Article on Publisher Site

Abstract

The rapidly growing volume of construction and demolition (C&D) waste produced by construction industry has led tremendous pressure on environmental protection. This study focuses on the improvement of the use of C&D waste as recycled fine aggregates (RFA) in cement composites by adding graphene oxide (GO), which is desirable to promote the application of recycled aggregates, decrease the exploitation of natural aggregates (NA) and alleviate environmental burden. In order to investigate the performance enhancement of RFA cement composites, the physico-chemical properties, microstructural performances, and environmental benefits of RFA mortars prepared with different GO contents (0.05 wt%, 0.1 wt%, and 0.2 wt%) have systematically examined. Electrochemical and mercury intrusive analysis revealed that the RFA mortars containing GO exhibited lower porosity and denser pore structure, compared to RFA mortars without any GO. The incorporated GO could further reduce ionic conductivity and thus improve the service life of RFA mortars. In addition, the interfacial transition zone (ITZ) between the RFA and cement paste was filled with hydration products when examined by scanning electron microscopy (SEM). Compared to those of RFA mortars without GO, the 28-day compressive and flexural strengths of RFA mortars with 0.2 wt% GO were increased by 19.2% and 47.5%, respectively. Finally, life cycle assessment (LCA) indicated that, compared to mortars with NA at the equivalent mechanical strengths, RFA mortars (containing 0.2 wt% GO) have better environmental performance (6.7% CO2 emission reduction or 2.2% primary energy demand saving). Overall, the addition of GO could significantly improve the quality of RFA mortars, which could further apparently improve the recycling of C&D waste, and then promote the sustainable development of construction sector.

Journal

Journal of Cleaner ProductionElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off