Performance assessment of a photonic radiative cooling system for office buildings

Performance assessment of a photonic radiative cooling system for office buildings Recent advances in materials have demonstrated the ability to maintain radiator surfaces at below-ambient temperatures in the presence of intense, direct sunlight. Daytime radiative cooling is promising for building applications. This paper estimates the energy savings from daytime radiative cooling, specifically based on photonic materials. A photonic radiative cooling system was proposed and modeled using the whole energy simulation program EnergyPlus. A typical medium-sized office building was used for the simulation analysis. Several reference systems were established to quantify the potential of energy savings from the photonic radiative cooling system. The reference systems include a variable-air-volume (VAV) system, a hydronic radiant system, and a nighttime radiative cooling system. The savings analysis was made for a number of locations with different climates. Simulation results showed that the photonic radiative cooling system saved between 45% and 68% cooling electricity relative to the VAV system and between 9% and 23% relative to the nighttime radiative cooling system featured with the best coating commercially available on market. A simple economic analysis was also made to estimate the maximum acceptable incremental cost for upgrading from nighttime cooling to photonic radiative cooling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Performance assessment of a photonic radiative cooling system for office buildings

Loading next page...
 
/lp/elsevier/performance-assessment-of-a-photonic-radiative-cooling-system-for-0TCzclfx30
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.062
Publisher site
See Article on Publisher Site

Abstract

Recent advances in materials have demonstrated the ability to maintain radiator surfaces at below-ambient temperatures in the presence of intense, direct sunlight. Daytime radiative cooling is promising for building applications. This paper estimates the energy savings from daytime radiative cooling, specifically based on photonic materials. A photonic radiative cooling system was proposed and modeled using the whole energy simulation program EnergyPlus. A typical medium-sized office building was used for the simulation analysis. Several reference systems were established to quantify the potential of energy savings from the photonic radiative cooling system. The reference systems include a variable-air-volume (VAV) system, a hydronic radiant system, and a nighttime radiative cooling system. The savings analysis was made for a number of locations with different climates. Simulation results showed that the photonic radiative cooling system saved between 45% and 68% cooling electricity relative to the VAV system and between 9% and 23% relative to the nighttime radiative cooling system featured with the best coating commercially available on market. A simple economic analysis was also made to estimate the maximum acceptable incremental cost for upgrading from nighttime cooling to photonic radiative cooling.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial