Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex

Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence... Seeing an object on one occasion may facilitate or prime processing of the same object if it is later again encountered. Such priming may also be found — but at a reduced level — for different but perceptually similar objects that are alternative exemplars or ‘tokens’ of the initially presented object. We explored the neural correlates of this perceptual specificity using event-related functional magnetic resonance imaging (fMRI) procedures, contrasting neural activity when participants made object classification decisions (size judgments) regarding previously presented objects (repeated same), alternative exemplars of previously presented objects (repeated different), or entirely new objects (novel). Many frontal regions (including bilateral frontal operculum, bilateral posterior inferior frontal/precentral, left anterior inferior frontal, and superior frontal cortices) and multiple late visual and posterior regions (including middle occipital, fusiform, fusiform-parahippocampal, precuneus, and posterior cingulate, all bilaterally), demonstrated reduced neural activity for repeated compared to novel objects. Greater repetition-induced reductions were observed for same than for different exemplars in several of these regions (bilateral posterior inferior frontal, right precuneus, bilateral middle occipital, bilateral fusiform, bilateral parahippocampal and bilateral superior parietal). Additionally, right fusiform (occipitotemporal) cortex showed significantly less priming for different versus same exemplars than did left fusiform. These findings converge with behavioral evidence from divided visual field studies and with neuropsychological evidence underscoring the key role of right occipitotemporal cortex in processing specific visual form information; possible differences in the representational-functional role of left fusiform are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropsychologia Elsevier

Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex

Loading next page...
 
/lp/elsevier/perceptual-specificity-in-visual-object-priming-functional-magnetic-LE3ZTSS17c
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science Ltd
ISSN
0028-3932
DOI
10.1016/S0028-3932(00)00087-7
Publisher site
See Article on Publisher Site

Abstract

Seeing an object on one occasion may facilitate or prime processing of the same object if it is later again encountered. Such priming may also be found — but at a reduced level — for different but perceptually similar objects that are alternative exemplars or ‘tokens’ of the initially presented object. We explored the neural correlates of this perceptual specificity using event-related functional magnetic resonance imaging (fMRI) procedures, contrasting neural activity when participants made object classification decisions (size judgments) regarding previously presented objects (repeated same), alternative exemplars of previously presented objects (repeated different), or entirely new objects (novel). Many frontal regions (including bilateral frontal operculum, bilateral posterior inferior frontal/precentral, left anterior inferior frontal, and superior frontal cortices) and multiple late visual and posterior regions (including middle occipital, fusiform, fusiform-parahippocampal, precuneus, and posterior cingulate, all bilaterally), demonstrated reduced neural activity for repeated compared to novel objects. Greater repetition-induced reductions were observed for same than for different exemplars in several of these regions (bilateral posterior inferior frontal, right precuneus, bilateral middle occipital, bilateral fusiform, bilateral parahippocampal and bilateral superior parietal). Additionally, right fusiform (occipitotemporal) cortex showed significantly less priming for different versus same exemplars than did left fusiform. These findings converge with behavioral evidence from divided visual field studies and with neuropsychological evidence underscoring the key role of right occipitotemporal cortex in processing specific visual form information; possible differences in the representational-functional role of left fusiform are discussed.

Journal

NeuropsychologiaElsevier

Published: Feb 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off